Hailay Kidu Teklehaymanot commited on
Commit
0cbc581
Β·
1 Parent(s): 3af0779

Add YAML metadata to README for Huggingface model card

Browse files
Files changed (1) hide show
  1. README.md +59 -31
README.md CHANGED
@@ -1,37 +1,65 @@
1
- # Machine Translation Model: English ↔ Tigrinya
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
 
3
  This model is a fine-tuned machine translation model trained to translate between English and Tigrinya. It was trained on the parallel corpus of English and Tigrinya sentences.
4
 
5
- ## Model Overview
6
-
7
- - **Model Type**: MarianMT (Multilingual Transformer Model)
8
- - **Languages**: English ↔ Tigrinya
9
- - **Model Architecture**: MarianMT, fine-tuned for English ↔ Tigrinya translation
10
- - **Training Framework**: Hugging Face Transformers, PyTorch
11
-
12
- ## Training Details
13
-
14
- - **Training Dataset**: NLLB Parallel Corpus (English ↔ Tigrinya)
15
- - **Training Epochs**: 3
16
- - **Batch Size**: 8
17
- - **Max Length**: 128 tokens
18
- - **Learning Rate**: Starts from `1.44e-07` and decays during training
19
- - **Training Loss**:
20
- - Final training loss: 0.4756
21
- - Per-epoch loss progress:
22
- - Epoch 1: 0.443
23
- - Epoch 2: 0.4077
24
- - Epoch 3: 0.4379
25
-
26
- - **Gradient Norms**:
27
- - Epoch 1: 1.14
28
- - Epoch 2: 1.11
29
- - Epoch 3: 1.06
30
-
31
- - **Training Time**: 43376.7 seconds (~12 hours)
32
- - **Training Speed**:
33
- - Training samples per second: 96.7
34
- - Training steps per second: 12.08
35
 
36
  ## Model Usage
37
 
 
1
+ ---
2
+ language:
3
+ - eng # English
4
+ - tig # Tigrinya
5
+ tags:
6
+ - tokenizer
7
+ - machine-translation
8
+ license: mit
9
+ datasets:
10
+ - nllb # NLLB training dataset
11
+ - opus # OPUS parallel data for testing
12
+ metrics:
13
+ - bleu
14
+ ---
15
+
16
+ # English-Tigrinya Tokenizer
17
+
18
+ This tokenizer is trained for English to Tigrinya machine translation tasks using the NLLB dataset for training and OPUS parallel data for testing.
19
+
20
+ ## Model Details
21
+
22
+ - **Languages:** English, Tigrinya
23
+ - **Model type:** Tokenizer using SentencePiece
24
+ - **License:** MIT License
25
+ - **Training dataset:** NLLB
26
+ - **Testing dataset:** OPUS parallel data
27
+ - **Evaluation metric:** BLEU score
28
+
29
+ ## Machine Translation Model: English ↔ Tigrinya
30
 
31
  This model is a fine-tuned machine translation model trained to translate between English and Tigrinya. It was trained on the parallel corpus of English and Tigrinya sentences.
32
 
33
+ ### Model Overview
34
+
35
+ - **Model Type**: MarianMT (Multilingual Transformer Model)
36
+ - **Languages**: English ↔ Tigrinya
37
+ - **Model Architecture**: MarianMT, fine-tuned for English ↔ Tigrinya translation
38
+ - **Training Framework**: Hugging Face Transformers, PyTorch
39
+
40
+ ### Training Details
41
+
42
+ - **Training Dataset**: NLLB Parallel Corpus (English ↔ Tigrinya)
43
+ - **Training Epochs**: 3
44
+ - **Batch Size**: 8
45
+ - **Max Length**: 128 tokens
46
+ - **Learning Rate**: Starts from `1.44e-07` and decays during training
47
+ - **Training Loss**:
48
+ - Final training loss: 0.4756
49
+ - Per-epoch loss progress:
50
+ - Epoch 1: 0.443
51
+ - Epoch 2: 0.4077
52
+ - Epoch 3: 0.4379
53
+
54
+ - **Gradient Norms**:
55
+ - Epoch 1: 1.14
56
+ - Epoch 2: 1.11
57
+ - Epoch 3: 1.06
58
+
59
+ - **Training Time**: 43376.7 seconds (~12 hours)
60
+ - **Training Speed**:
61
+ - Training samples per second: 96.7
62
+ - Training steps per second: 12.08
63
 
64
  ## Model Usage
65