Hailay Kidu Teklehaymanot
commited on
Commit
Β·
0cbc581
1
Parent(s):
3af0779
Add YAML metadata to README for Huggingface model card
Browse files
README.md
CHANGED
@@ -1,37 +1,65 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
This model is a fine-tuned machine translation model trained to translate between English and Tigrinya. It was trained on the parallel corpus of English and Tigrinya sentences.
|
4 |
|
5 |
-
|
6 |
-
|
7 |
-
- **Model Type**: MarianMT (Multilingual Transformer Model)
|
8 |
-
- **Languages**: English β Tigrinya
|
9 |
-
- **Model Architecture**: MarianMT, fine-tuned for English β Tigrinya translation
|
10 |
-
- **Training Framework**: Hugging Face Transformers, PyTorch
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
- **Training Dataset**: NLLB Parallel Corpus (English β Tigrinya)
|
15 |
-
- **Training Epochs**: 3
|
16 |
-
- **Batch Size**: 8
|
17 |
-
- **Max Length**: 128 tokens
|
18 |
-
- **Learning Rate**: Starts from `1.44e-07` and decays during training
|
19 |
-
- **Training Loss**:
|
20 |
-
- Final training loss: 0.4756
|
21 |
-
- Per-epoch loss progress:
|
22 |
-
- Epoch 1: 0.443
|
23 |
-
- Epoch 2: 0.4077
|
24 |
-
- Epoch 3: 0.4379
|
25 |
-
|
26 |
-
- **Gradient Norms**:
|
27 |
-
- Epoch 1: 1.14
|
28 |
-
- Epoch 2: 1.11
|
29 |
-
- Epoch 3: 1.06
|
30 |
-
|
31 |
-
- **Training Time**: 43376.7 seconds (~12 hours)
|
32 |
-
- **Training Speed**:
|
33 |
-
- Training samples per second: 96.7
|
34 |
-
- Training steps per second: 12.08
|
35 |
|
36 |
## Model Usage
|
37 |
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- eng # English
|
4 |
+
- tig # Tigrinya
|
5 |
+
tags:
|
6 |
+
- tokenizer
|
7 |
+
- machine-translation
|
8 |
+
license: mit
|
9 |
+
datasets:
|
10 |
+
- nllb # NLLB training dataset
|
11 |
+
- opus # OPUS parallel data for testing
|
12 |
+
metrics:
|
13 |
+
- bleu
|
14 |
+
---
|
15 |
+
|
16 |
+
# English-Tigrinya Tokenizer
|
17 |
+
|
18 |
+
This tokenizer is trained for English to Tigrinya machine translation tasks using the NLLB dataset for training and OPUS parallel data for testing.
|
19 |
+
|
20 |
+
## Model Details
|
21 |
+
|
22 |
+
- **Languages:** English, Tigrinya
|
23 |
+
- **Model type:** Tokenizer using SentencePiece
|
24 |
+
- **License:** MIT License
|
25 |
+
- **Training dataset:** NLLB
|
26 |
+
- **Testing dataset:** OPUS parallel data
|
27 |
+
- **Evaluation metric:** BLEU score
|
28 |
+
|
29 |
+
## Machine Translation Model: English β Tigrinya
|
30 |
|
31 |
This model is a fine-tuned machine translation model trained to translate between English and Tigrinya. It was trained on the parallel corpus of English and Tigrinya sentences.
|
32 |
|
33 |
+
### Model Overview
|
34 |
+
|
35 |
+
- **Model Type**: MarianMT (Multilingual Transformer Model)
|
36 |
+
- **Languages**: English β Tigrinya
|
37 |
+
- **Model Architecture**: MarianMT, fine-tuned for English β Tigrinya translation
|
38 |
+
- **Training Framework**: Hugging Face Transformers, PyTorch
|
39 |
+
|
40 |
+
### Training Details
|
41 |
+
|
42 |
+
- **Training Dataset**: NLLB Parallel Corpus (English β Tigrinya)
|
43 |
+
- **Training Epochs**: 3
|
44 |
+
- **Batch Size**: 8
|
45 |
+
- **Max Length**: 128 tokens
|
46 |
+
- **Learning Rate**: Starts from `1.44e-07` and decays during training
|
47 |
+
- **Training Loss**:
|
48 |
+
- Final training loss: 0.4756
|
49 |
+
- Per-epoch loss progress:
|
50 |
+
- Epoch 1: 0.443
|
51 |
+
- Epoch 2: 0.4077
|
52 |
+
- Epoch 3: 0.4379
|
53 |
+
|
54 |
+
- **Gradient Norms**:
|
55 |
+
- Epoch 1: 1.14
|
56 |
+
- Epoch 2: 1.11
|
57 |
+
- Epoch 3: 1.06
|
58 |
+
|
59 |
+
- **Training Time**: 43376.7 seconds (~12 hours)
|
60 |
+
- **Training Speed**:
|
61 |
+
- Training samples per second: 96.7
|
62 |
+
- Training steps per second: 12.08
|
63 |
|
64 |
## Model Usage
|
65 |
|