Initial upload of Russian Constructicon embedder model
Browse files- .gitattributes +1 -0
- 1_Pooling/config.json +10 -0
- README.md +194 -0
- config.json +28 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- sentencepiece.bpe.model +3 -0
- special_tokens_map.json +51 -0
- tokenizer.json +3 -0
- tokenizer_config.json +63 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 1024,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,194 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- sentence-transformers
|
4 |
+
- sentence-similarity
|
5 |
+
- feature-extraction
|
6 |
+
- generated_from_trainer
|
7 |
+
- dataset_size:15298
|
8 |
+
- loss:CachedMultipleNegativesSymmetricRankingLoss
|
9 |
+
- russian
|
10 |
+
- constructicon
|
11 |
+
- nlp
|
12 |
+
- linguistics
|
13 |
+
base_model: intfloat/multilingual-e5-large-instruct
|
14 |
+
widget:
|
15 |
+
- source_sentence: 'Instruct: Given a sentence, find the constructions of the Russian
|
16 |
+
Constructicon that it contains
|
17 |
+
|
18 |
+
Query: Петр так и замер.'
|
19 |
+
sentences:
|
20 |
+
- NP-Nom так и VP-Pfv
|
21 |
+
- VP вокруг да около
|
22 |
+
- NP-Nom в гробу видать NP-Acc
|
23 |
+
- source_sentence: 'Instruct: Given a sentence, find the constructions of the Russian
|
24 |
+
Constructicon that it contains
|
25 |
+
|
26 |
+
Query: Мы, мягко говоря, совсем не ладили.'
|
27 |
+
sentences:
|
28 |
+
- VP по всем правилам (NP-Gen)
|
29 |
+
- как насчёт XP?
|
30 |
+
- мягко говоря, Cl
|
31 |
+
- source_sentence: 'Instruct: Given a sentence, find the constructions of the Russian
|
32 |
+
Constructicon that it contains
|
33 |
+
|
34 |
+
Query: Не беспокойтесь, всё будет сделано в лучшем виде.'
|
35 |
+
sentences:
|
36 |
+
- быть может, XP/Cl
|
37 |
+
- вот было бы здорово, если бы Cl
|
38 |
+
- всё будет Adv/Adj-Short
|
39 |
+
- source_sentence: 'Instruct: Given a sentence, find the constructions of the Russian
|
40 |
+
Constructicon that it contains
|
41 |
+
|
42 |
+
Query: Самолет до Саратова уже год как отменили.'
|
43 |
+
sentences:
|
44 |
+
- показать, где раки зимуют NP-Dat
|
45 |
+
- VP как угорелый
|
46 |
+
- (вот) (уже) (NumCrd-Nom/NumCrd-Acc) NP Cop как Cl/NP-Nom (вот) (уже) (NumCrd-Acc)
|
47 |
+
NP как XP
|
48 |
+
- source_sentence: 'Instruct: Given a sentence, find the constructions of the Russian
|
49 |
+
Constructicon that it contains
|
50 |
+
|
51 |
+
Query: Срочно делай уроки, а не то будешь иметь дело с раздраженным отцом!'
|
52 |
+
sentences:
|
53 |
+
- Cl, (а) не то Aux-Fut иметь дело с NP-Ins
|
54 |
+
- VP (NP-Acc) с ног на голову
|
55 |
+
- VP под NP-Acc
|
56 |
+
pipeline_tag: sentence-similarity
|
57 |
+
library_name: sentence-transformers
|
58 |
+
language:
|
59 |
+
- ru
|
60 |
+
---
|
61 |
+
|
62 |
+
# Russian Constructicon Embedder
|
63 |
+
|
64 |
+
This is a specialized [sentence-transformers](https://www.SBERT.net) model fine-tuned from [intfloat/multilingual-e5-large-instruct](https://huggingface.co/intfloat/multilingual-e5-large-instruct) for finding Russian Constructicon patterns in text. The model is trained to compare Russian text examples with construction patterns from the Russian Constructicon database, enabling semantic search for linguistic constructions.
|
65 |
+
|
66 |
+
## Model Details
|
67 |
+
|
68 |
+
### Model Description
|
69 |
+
- **Model Type:** Sentence Transformer specialized for Russian Constructicon patterns
|
70 |
+
- **Base model:** [intfloat/multilingual-e5-large-instruct](https://huggingface.co/intfloat/multilingual-e5-large-instruct)
|
71 |
+
- **Maximum Sequence Length:** 512 tokens
|
72 |
+
- **Output Dimensionality:** 1024 dimensions
|
73 |
+
- **Similarity Function:** Cosine Similarity
|
74 |
+
- **Language:** Russian
|
75 |
+
- **Training Dataset:** Russian Constructicon examples and patterns
|
76 |
+
|
77 |
+
### Model Purpose
|
78 |
+
|
79 |
+
This model is specifically designed to encode Russian text examples and Constructicon patterns into a shared embedding space where similar constructions are close together. It enables:
|
80 |
+
|
81 |
+
- Finding Constructicon patterns that match given Russian text examples
|
82 |
+
- Semantic search through Russian construction databases
|
83 |
+
- Similarity comparison between text examples and linguistic patterns
|
84 |
+
- Construction pattern retrieval and ranking
|
85 |
+
|
86 |
+
## Usage
|
87 |
+
|
88 |
+
### Primary Usage (RusCxnPipe Library)
|
89 |
+
|
90 |
+
This model is designed to be used with the [RusCxnPipe](https://github.com/Futyn-Maker/ruscxnpipe) library for automatic Russian Constructicon pattern extraction:
|
91 |
+
|
92 |
+
```python
|
93 |
+
from ruscxnpipe import SemanticSearch
|
94 |
+
|
95 |
+
# Initialize with this specific model
|
96 |
+
search = SemanticSearch(
|
97 |
+
model_name="Futyn-Maker/ruscxn-embedder",
|
98 |
+
query_prefix="Instruct: Given a sentence, find the constructions of the Russian Constructicon that it contains\nQuery: ",
|
99 |
+
pattern_prefix=""
|
100 |
+
)
|
101 |
+
|
102 |
+
# Find construction candidates
|
103 |
+
examples = ["Петр так и замер.", "Мы, мягко говоря, совсем не ладили."]
|
104 |
+
results = search.find_candidates(queries=examples, n=5)
|
105 |
+
|
106 |
+
for result in results:
|
107 |
+
print(f"Example: {result['query']}")
|
108 |
+
for candidate in result['candidates']:
|
109 |
+
print(f" Pattern: {candidate['pattern']} (similarity: {candidate['similarity']:.3f})")
|
110 |
+
```
|
111 |
+
|
112 |
+
### Direct Usage (Sentence Transformers)
|
113 |
+
|
114 |
+
For advanced users who want to use the model directly:
|
115 |
+
|
116 |
+
```python
|
117 |
+
from sentence_transformers import SentenceTransformer
|
118 |
+
|
119 |
+
model = SentenceTransformer("Futyn-Maker/ruscxn-embedder")
|
120 |
+
|
121 |
+
# Note: Use the correct prefixes for optimal performance
|
122 |
+
query_prefix = "Instruct: Given a sentence, find the constructions of the Russian Constructicon that it contains\nQuery: "
|
123 |
+
pattern_prefix = ""
|
124 |
+
|
125 |
+
# Encode a Russian example
|
126 |
+
example = query_prefix + "Петр так и замер."
|
127 |
+
example_embedding = model.encode(example)
|
128 |
+
|
129 |
+
# Encode construction patterns (no prefix needed)
|
130 |
+
patterns = [
|
131 |
+
"NP-Nom так и VP-Pfv",
|
132 |
+
"VP вокруг да около",
|
133 |
+
"мягко говоря, Cl"
|
134 |
+
]
|
135 |
+
pattern_embeddings = model.encode(patterns)
|
136 |
+
|
137 |
+
# Calculate similarities
|
138 |
+
from sentence_transformers.util import cos_sim
|
139 |
+
similarities = cos_sim(example_embedding, pattern_embeddings)
|
140 |
+
print(similarities)
|
141 |
+
```
|
142 |
+
|
143 |
+
## Out-of-Scope Use
|
144 |
+
|
145 |
+
While this model is optimized for Russian Constructicon pattern matching, it may also be useful for other tasks involving Russian linguistic patterns, such as:
|
146 |
+
|
147 |
+
- Clustering of similar constructions
|
148 |
+
- Classification of constructions
|
149 |
+
|
150 |
+
However, performance on these tasks has not been systematically evaluated.
|
151 |
+
|
152 |
+
## Training Details
|
153 |
+
|
154 |
+
### Training Dataset
|
155 |
+
|
156 |
+
The model was trained on **15,298 examples** from the Russian Constructicon database, where each training sample consists of:
|
157 |
+
- **Query:** A Russian text example with the instruction prefix
|
158 |
+
- **Pattern:** A corresponding Constructicon pattern
|
159 |
+
|
160 |
+
### Training Objective
|
161 |
+
|
162 |
+
The model was fine-tuned using **CachedMultipleNegativesSymmetricRankingLoss** to learn embeddings where:
|
163 |
+
- Examples containing a construction are similar to that construction's pattern
|
164 |
+
- The embedding space preserves semantic relationships between related constructions
|
165 |
+
|
166 |
+
### Training Hyperparameters
|
167 |
+
|
168 |
+
- **Learning rate:** 2e-05
|
169 |
+
- **Batch size:** 1024
|
170 |
+
- **Training epochs:** 10 (best model from epoch 5)
|
171 |
+
- **Warmup ratio:** 0.1
|
172 |
+
- **Weight decay:** 0.01
|
173 |
+
- **Loss function:** CachedMultipleNegativesSymmetricRankingLoss
|
174 |
+
|
175 |
+
### Model Architecture
|
176 |
+
|
177 |
+
```
|
178 |
+
SentenceTransformer(
|
179 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
|
180 |
+
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
181 |
+
(2): Normalize()
|
182 |
+
)
|
183 |
+
```
|
184 |
+
|
185 |
+
## Performance
|
186 |
+
|
187 |
+
The model achieved its best validation performance at epoch 5 with a validation loss of **0.1145**.
|
188 |
+
|
189 |
+
## Framework Versions
|
190 |
+
|
191 |
+
- Python: 3.10.12
|
192 |
+
- Sentence Transformers: 4.1.0
|
193 |
+
- Transformers: 4.51.3
|
194 |
+
- PyTorch: 2.7.0+cu126
|
config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "./embedding_model",
|
3 |
+
"architectures": [
|
4 |
+
"XLMRobertaModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.1,
|
12 |
+
"hidden_size": 1024,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 4096,
|
15 |
+
"layer_norm_eps": 1e-05,
|
16 |
+
"max_position_embeddings": 514,
|
17 |
+
"model_type": "xlm-roberta",
|
18 |
+
"num_attention_heads": 16,
|
19 |
+
"num_hidden_layers": 24,
|
20 |
+
"output_past": true,
|
21 |
+
"pad_token_id": 1,
|
22 |
+
"position_embedding_type": "absolute",
|
23 |
+
"torch_dtype": "float32",
|
24 |
+
"transformers_version": "4.49.0",
|
25 |
+
"type_vocab_size": 1,
|
26 |
+
"use_cache": true,
|
27 |
+
"vocab_size": 250002
|
28 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "4.1.0",
|
4 |
+
"transformers": "4.49.0",
|
5 |
+
"pytorch": "2.4.1+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": "cosine"
|
10 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4dbbc5d5741756a3532cfc39fdcc273a2f25008b7325d6dff551dbabf9a977b3
|
3 |
+
size 2239607176
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
sentencepiece.bpe.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
|
3 |
+
size 5069051
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "<s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "</s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "<mask>",
|
25 |
+
"lstrip": true,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "<pad>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "</s>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "<unk>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:883b037111086fd4dfebbbc9b7cee11e1517b5e0c0514879478661440f137085
|
3 |
+
size 17082987
|
tokenizer_config.json
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<pad>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"250001": {
|
36 |
+
"content": "<mask>",
|
37 |
+
"lstrip": true,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"additional_special_tokens": [],
|
45 |
+
"bos_token": "<s>",
|
46 |
+
"clean_up_tokenization_spaces": true,
|
47 |
+
"cls_token": "<s>",
|
48 |
+
"eos_token": "</s>",
|
49 |
+
"extra_special_tokens": {},
|
50 |
+
"mask_token": "<mask>",
|
51 |
+
"max_length": 512,
|
52 |
+
"model_max_length": 512,
|
53 |
+
"pad_to_multiple_of": null,
|
54 |
+
"pad_token": "<pad>",
|
55 |
+
"pad_token_type_id": 0,
|
56 |
+
"padding_side": "right",
|
57 |
+
"sep_token": "</s>",
|
58 |
+
"stride": 0,
|
59 |
+
"tokenizer_class": "XLMRobertaTokenizer",
|
60 |
+
"truncation_side": "right",
|
61 |
+
"truncation_strategy": "longest_first",
|
62 |
+
"unk_token": "<unk>"
|
63 |
+
}
|