File size: 17,466 Bytes
48b48f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
# ==============================================================================
#                          Inference Script
# ==============================================================================
# --- Necessary Imports ---
import torch
import torch.nn as nn
from dataclasses import dataclass, field
import math
import torch.nn.functional as F
from transformers import AutoTokenizer
import os
import glob
import time
import datetime
import traceback
import dataclasses # Make sure this is imported

# --- Model Configuration ---
# IMPORTANT: This definition MUST exactly match the one used during training
#            when the checkpoint was saved.
@dataclass
class ModelArgs:
    # --- ~221M Config used for training step_1200 ---
    hidden_size: int = 768; num_hidden_layers: int = 12; num_attention_heads: int = 12
    num_key_value_heads: int = 12; intermediate_size: int = 2048; vocab_size: int = 128000
    rms_norm_eps: float = 1e-5; rope_theta: float = 500000.0; max_position_embeddings: int = 4096
    head_dim: int = field(init=False)
    add_recency_bias: bool = False # Ensure this matches the value used when saving the checkpoint

    def __post_init__(self):
        self.head_dim = self.hidden_size // self.num_attention_heads
        if self.hidden_size % self.num_attention_heads != 0: raise ValueError("hidden_size % num_attention_heads != 0")
        if self.num_attention_heads % self.num_key_value_heads != 0: raise ValueError("num_attention_heads % num_key_value_heads != 0")

# --- Model Components (RMSNorm, RoPE funcs, Attention, FeedForward, TransformerBlock, Llama) ---
# V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V
# --- PASTE THE FULL DEFINITIONS OF THE FOLLOWING CLASSES/FUNCTIONS HERE ---
# --- from your model_architecture.py script:                         ---
#
class RMSNorm(nn.Module):
    def __init__(self, dim: int, eps: float = 1e-6): super().__init__(); self.eps = eps; self.weight = nn.Parameter(torch.ones(dim))
    def _norm(self, x): return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
    def forward(self, x): original_dtype = x.dtype; output = self._norm(x.float()).to(original_dtype); return output * self.weight

def precompute_theta_pos_frequencies(head_dim: int, seq_len: int, device: str | torch.device, theta: float = 10000.0):
    if head_dim % 2 != 0: raise ValueError("head_dim must be even for RoPE")
    theta_indices = torch.arange(0, head_dim, 2).float(); theta_freqs = 1.0 / (theta**(theta_indices / head_dim))
    target_device = torch.device(device) if isinstance(device, str) else device; theta_freqs = theta_freqs.to(target_device)
    positions = torch.arange(seq_len, device=target_device).float(); freqs = torch.outer(positions, theta_freqs).float(); return freqs, positions

def apply_rotary_embeddings(x: torch.Tensor, freqs_cis_full: torch.Tensor, positions: torch.Tensor):
    positions = positions.long(); max_pos = freqs_cis_full.shape[0]
    if torch.max(positions) >= max_pos: positions = torch.clamp(positions, max=max_pos - 1)
    freqs = freqs_cis_full[positions]; freqs = freqs.unsqueeze(0).unsqueeze(2)
    bsz, seq_len, n_part_heads, head_dim = x.shape; x1 = x[..., : head_dim // 2]; x2 = x[..., head_dim // 2 :]
    cos_freqs = torch.cos(freqs).type_as(x); sin_freqs = torch.sin(freqs).type_as(x)
    rotated_x1 = x1 * cos_freqs - x2 * sin_freqs; rotated_x2 = x1 * sin_freqs + x2 * cos_freqs
    rotated_x = torch.cat([rotated_x1, rotated_x2], dim=-1); return rotated_x.type_as(x)

class Attention(nn.Module):
    def __init__(self, args: ModelArgs):
        super().__init__(); self.args = args; self.num_heads = args.num_attention_heads; self.num_kv_heads = args.num_key_value_heads
        self.head_dim = args.head_dim; self.repeats = self.num_heads // self.num_kv_heads
        self.wq = nn.Linear(args.hidden_size, args.num_attention_heads * args.head_dim, bias=False)
        self.wk = nn.Linear(args.hidden_size, args.num_key_value_heads * args.head_dim, bias=False)
        self.wv = nn.Linear(args.hidden_size, args.num_key_value_heads * args.head_dim, bias=False)
        self.wo = nn.Linear(args.num_attention_heads * args.head_dim, args.hidden_size, bias=False)
    def _repeat_kv(self, x: torch.Tensor, n_rep: int) -> torch.Tensor:
        bsz, n_kv_heads, seqlen, head_dim = x.shape;
        if n_rep == 1: return x
        return (x[:, :, None, :, :].expand(bsz, n_kv_heads, n_rep, seqlen, head_dim).reshape(bsz, n_kv_heads * n_rep, seqlen, head_dim))
    def _create_recency_bias(self, seqlen, full_seqlen, device, dtype, bias_strength=0.1, decay_rate=0.9):
        bias = torch.zeros((1, 1, seqlen, full_seqlen), device=device, dtype=dtype); indices = torch.arange(full_seqlen, device=device)
        rel_pos = torch.arange(seqlen, device=device).unsqueeze(1) - indices.unsqueeze(0); mask = rel_pos >= 0
        decaying_bias = bias_strength * (decay_rate ** (-rel_pos[mask])); bias[:, :, mask] = decaying_bias.type_as(bias); return bias
    def forward(self, x: torch.Tensor, freqs_cis_full: torch.Tensor, positions: torch.Tensor, mask: torch.Tensor | None = None, cache: tuple[torch.Tensor, torch.Tensor] | None = None) -> tuple[torch.Tensor, tuple[torch.Tensor, torch.Tensor]]:
        bsz, seqlen, _ = x.shape; xq, xk, xv = self.wq(x), self.wk(x), self.wv(x)
        xq = xq.view(bsz, seqlen, self.num_heads, self.head_dim); xk = xk.view(bsz, seqlen, self.num_kv_heads, self.head_dim); xv = xv.view(bsz, seqlen, self.num_kv_heads, self.head_dim)
        xq = apply_rotary_embeddings(xq, freqs_cis_full, positions); xk = apply_rotary_embeddings(xk, freqs_cis_full, positions)
        xk = xk.transpose(1, 2); xv = xv.transpose(1, 2)
        if cache is not None: cache_k, cache_v = cache; keys = torch.cat((cache_k.to(xk.device), xk), dim=2); values = torch.cat((cache_v.to(xv.device), xv), dim=2)
        else: keys = xk; values = xv
        updated_cache = (keys.detach(), values.detach()); keys_repeated = self._repeat_kv(keys, self.repeats); values_repeated = self._repeat_kv(values, self.repeats)
        xq = xq.transpose(1, 2); scores = torch.matmul(xq.float(), keys_repeated.transpose(-2, -1).float()) / math.sqrt(self.head_dim)
        if self.args.add_recency_bias:
             full_seqlen = keys_repeated.shape[-2]; recency_bias = self._create_recency_bias(seqlen, full_seqlen, device=scores.device, dtype=scores.dtype); scores = scores + recency_bias
        if mask is not None:
            full_seqlen = keys_repeated.shape[-2]; expected_mask_shape_end = (seqlen, full_seqlen)
            if mask.shape[-2:] != expected_mask_shape_end:
                 try: mask_slice = mask[:, :, -seqlen:, :full_seqlen]; scores = scores + mask_slice.float()
                 except Exception: pass
            else: scores = scores + mask.float()
        scores = nn.functional.softmax(scores, dim=-1).type_as(xq); output = torch.matmul(scores, values_repeated)
        output = output.transpose(1, 2).contiguous().view(bsz, seqlen, -1); output = self.wo(output); return output, updated_cache

class FeedForward(nn.Module):
    def __init__(self, args: ModelArgs): super().__init__(); self.w1 = nn.Linear(args.hidden_size, args.intermediate_size, bias=False); self.w3 = nn.Linear(args.hidden_size, args.intermediate_size, bias=False); self.w2 = nn.Linear(args.intermediate_size, args.hidden_size, bias=False)
    def forward(self, x: torch.Tensor) -> torch.Tensor: return self.w2(nn.functional.silu(self.w1(x)) * self.w3(x))

class TransformerBlock(nn.Module):
    def __init__(self, args: ModelArgs): super().__init__(); self.args = args; self.attention_norm = RMSNorm(args.hidden_size, eps=args.rms_norm_eps); self.attention = Attention(args); self.ffn_norm = RMSNorm(args.hidden_size, eps=args.rms_norm_eps); self.feed_forward = FeedForward(args)
    def forward(self, x: torch.Tensor, freqs_cis_full: torch.Tensor, positions: torch.Tensor, mask: torch.Tensor | None = None, cache: tuple[torch.Tensor, torch.Tensor] | None = None) -> tuple[torch.Tensor, tuple[torch.Tensor, torch.Tensor]]:
        r, cache = self.attention(self.attention_norm(x), freqs_cis_full, positions, mask, cache); h = x + r; r = self.feed_forward(self.ffn_norm(h)); out = h + r; return out, cache

class Llama(nn.Module):
    def __init__(self, args: ModelArgs):
        super().__init__(); self.args = args; self.tok_embeddings = nn.Embedding(args.vocab_size, args.hidden_size); self.layers = nn.ModuleList([TransformerBlock(args) for _ in range(args.num_hidden_layers)])
        self.norm = RMSNorm(args.hidden_size, eps=args.rms_norm_eps); self.tok_embeddings.weight.requires_grad = True
        freqs_cis, _ = precompute_theta_pos_frequencies(args.head_dim, args.max_position_embeddings, device='cpu', theta=args.rope_theta)
        self.register_buffer("freqs_cis", freqs_cis, persistent=False)
    def forward(self, tokens: torch.Tensor, positions: torch.Tensor):
        bsz, seqlen = tokens.shape; h = self.tok_embeddings(tokens); freqs_cis_full = self.freqs_cis.to(h.device); mask = None
        if seqlen > 1: mask = torch.full((1, 1, seqlen, seqlen), float("-inf"), device=h.device); mask = torch.triu(mask, diagonal=1).type_as(h)
        positions = positions.to(h.device)
        for layer in self.layers: h, _ = layer(h, freqs_cis_full, positions, mask, cache=None) # Pass cache=None for non-cached forward
        h = self.norm(h); output = F.linear(h, self.tok_embeddings.weight); return output # Use tied weights

@torch.no_grad()
def generate(model: Llama, tokenizer: AutoTokenizer, prompt: str, max_new_tokens: int, temperature: float = 1.0, top_k: int | None = None, top_p: float | None = None):
    model.eval() # CORRECTED: Separate line
    try:
        model_device = next(model.parameters()).device
        model_dtype = next(model.parameters()).dtype
    except StopIteration:
        print("Warning: Model has no parameters. Assuming CPU and float32.")
        model_device = torch.device("cpu")
        model_dtype = torch.float32

    prompt_ids = tokenizer.encode(prompt, add_special_tokens=True); tokens = torch.tensor([prompt_ids], dtype=torch.long, device=model_device)
    cache = [(torch.zeros((1, model.args.num_key_value_heads, 0, model.args.head_dim), device=model_device, dtype=model_dtype),
              torch.zeros((1, model.args.num_key_value_heads, 0, model.args.head_dim), device=model_device, dtype=model_dtype))
             for _ in range(model.args.num_hidden_layers)]
    generated_token_ids = []; current_tokens = tokens; print(f"Generating {max_new_tokens} tokens from prompt: '{prompt}'"); print("Output: ", end='')
    full_freqs_cis = model.freqs_cis.to(model_device)
    for i in range(max_new_tokens):
        current_seq_len = current_tokens.shape[1]; start_pos = cache[0][0].shape[2]; positions = torch.arange(start_pos, start_pos + current_seq_len, device=model_device)
        current_mask = None;
        if i == 0 and current_seq_len > 1: current_mask = torch.full((1, 1, current_seq_len, current_seq_len), float("-inf"), device=model_device); current_mask = torch.triu(current_mask, diagonal=1).type(model_dtype)
        h = model.tok_embeddings(current_tokens); updated_cache_list = []
        for layer_idx, layer in enumerate(model.layers): h, updated_layer_cache = layer(h, full_freqs_cis, positions, current_mask, cache[layer_idx]); updated_cache_list.append(updated_layer_cache)
        cache = updated_cache_list; h = model.norm(h); logits = F.linear(h, model.tok_embeddings.weight)
        next_token_logits = logits[:, -1, :]
        if temperature == 0: next_token_id = torch.argmax(next_token_logits, dim=-1, keepdim=True)
        else:
            next_token_logits = next_token_logits / temperature
            if top_k is not None and top_k > 0: v, _ = torch.topk(next_token_logits, min(top_k, next_token_logits.size(-1))); next_token_logits[next_token_logits < v[:, [-1]]] = float('-inf')
            if top_p is not None and 0.0 < top_p < 1.0:
                probs_for_filter = F.softmax(next_token_logits, dim=-1); probs_sort, probs_idx = torch.sort(probs_for_filter, descending=True); probs_sum = torch.cumsum(probs_sort, dim=-1)
                mask_top_p = probs_sum > top_p; mask_top_p[..., 0] = False; mask_top_p[..., 1:] = mask_top_p[..., :-1].clone(); indices_to_remove = mask_top_p.scatter(1, probs_idx, mask_top_p); next_token_logits[indices_to_remove] = float('-inf')
            probs = F.softmax(next_token_logits, dim=-1); next_token_id = torch.multinomial(probs, num_samples=1)
        if tokenizer.eos_token_id is not None and next_token_id.item() == tokenizer.eos_token_id: print("\n[EOS token reached]"); break
        next_token_id_item = next_token_id.item(); generated_token_ids.append(next_token_id_item); current_tokens = next_token_id.clone()
        print(tokenizer.decode([next_token_id_item]), end='', flush=True)
        if len(generated_token_ids) >= max_new_tokens: break
    print("\n--- Generation Complete ---"); final_token_ids = prompt_ids + generated_token_ids; full_generated_text = tokenizer.decode(final_token_ids, skip_special_tokens=False)
    print(f"\nFull generated text:\n{full_generated_text}"); return full_generated_text
# --- End Placeholders ---


# --- Main Inference Execution ---
if __name__ == "__main__":

    # --- Configuration for Inference ---
    # --- !! USE SPECIFIC WINDOWS PATH !! ---
    raw_checkpoint_path = r".\step_800.pt" # <<< CHANGED to step 1200
    # --- Normalize the path ---
    checkpoint_path = os.path.normpath(raw_checkpoint_path)
    # --- End Adjust ---

    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    print(f"\n--- Inference Setup ---")
    print(f"Using device: {device}")
    print(f"Attempting to load checkpoint: {checkpoint_path}")

    # --- Load Checkpoint and Model Args ---
    if not os.path.exists(checkpoint_path):
        # Removed the fallback logic as we are specifying an exact path
        exit(f"Error: Checkpoint file not found at the specified path: {checkpoint_path}")

    try:
        # Load checkpoint to CPU first
        checkpoint = torch.load(checkpoint_path, map_location='cpu', weights_only=False) # weights_only=False needed for ModelArgs

        # Load args dict and instantiate ModelArgs
        saved_args_data = checkpoint.get('model_args', checkpoint.get('model_args_dict')) # Check both keys
        if not saved_args_data: exit("Error: model_args not found in checkpoint.")
        if not isinstance(saved_args_data, dict): saved_args_dict = dataclasses.asdict(saved_args_data)
        else: saved_args_dict = saved_args_data
        init_field_names = {f.name for f in dataclasses.fields(ModelArgs) if f.init}
        filtered_args_dict = {k: v for k, v in saved_args_dict.items() if k in init_field_names}
        config_inf = ModelArgs(**filtered_args_dict)

        print(f"Loaded model config from checkpoint: {config_inf}")

        # --- Instantiate Model ---
        model_inf = Llama(config_inf) # Instantiate on CPU
        print("Model instantiated on CPU.")

        # --- Load Weights ---
        model_inf.load_state_dict(checkpoint['model_state_dict'])
        print("Model weights loaded.")
        model_inf.to(device) # Move model to target device
        print(f"Model moved to {device}.")

        # --- Prepare for Inference ---
        model_inf.eval()
        if device.type == 'cuda':
            try: model_inf = model_inf.half(); print("Converted loaded model to float16 for inference.")
            except Exception as e: print(f"Could not convert model to float16: {e}")

    except Exception as e: exit(f"Error loading checkpoint or instantiating model: {e}")

    # --- Load Tokenizer ---
    tokenizer_name_inf = "deepseek-ai/DeepSeek-R1"
    print(f"Loading tokenizer: {tokenizer_name_inf}")
    try:
        tokenizer_inf = AutoTokenizer.from_pretrained(tokenizer_name_inf, trust_remote_code=True)
        if tokenizer_inf.pad_token is None:
            if tokenizer_inf.eos_token: tokenizer_inf.pad_token = tokenizer_inf.eos_token
            else: tokenizer_inf.add_special_tokens({'pad_token': '[PAD]'})
        print("Tokenizer loaded.")
    except Exception as e: exit(f"Error loading tokenizer: {e}")

    # --- Run Generation ---
    print(f"\n--- Running Generation with Loaded Checkpoint ({os.path.basename(checkpoint_path)}) ---") # Updated print
    prompt_inf = "Valkyria Chronicles is a tactical role-playing game developed and published by"
    max_gen_len = 100
    gen_temperature = 0.7
    gen_top_k = 50
    gen_top_p = 0.9

    try:
        start_time_inf = time.time()
        _ = generate(
            model=model_inf, tokenizer=tokenizer_inf, prompt=prompt_inf,
            max_new_tokens=max_gen_len, temperature=gen_temperature,
            top_k=gen_top_k, top_p=gen_top_p
        )
        end_time_inf = time.time()
        print(f"\nInference duration: {datetime.timedelta(seconds=int(end_time_inf - start_time_inf))}")
        print("\n(Output quality depends heavily on limited training. Expect limited coherence.)")
    except Exception as e: print(f"\nAn error occurred during generation: {e}"); traceback.print_exc()

    print("\n--- Inference Script Section Finished ---")