File size: 17,466 Bytes
48b48f8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
# ==============================================================================
# Inference Script
# ==============================================================================
# --- Necessary Imports ---
import torch
import torch.nn as nn
from dataclasses import dataclass, field
import math
import torch.nn.functional as F
from transformers import AutoTokenizer
import os
import glob
import time
import datetime
import traceback
import dataclasses # Make sure this is imported
# --- Model Configuration ---
# IMPORTANT: This definition MUST exactly match the one used during training
# when the checkpoint was saved.
@dataclass
class ModelArgs:
# --- ~221M Config used for training step_1200 ---
hidden_size: int = 768; num_hidden_layers: int = 12; num_attention_heads: int = 12
num_key_value_heads: int = 12; intermediate_size: int = 2048; vocab_size: int = 128000
rms_norm_eps: float = 1e-5; rope_theta: float = 500000.0; max_position_embeddings: int = 4096
head_dim: int = field(init=False)
add_recency_bias: bool = False # Ensure this matches the value used when saving the checkpoint
def __post_init__(self):
self.head_dim = self.hidden_size // self.num_attention_heads
if self.hidden_size % self.num_attention_heads != 0: raise ValueError("hidden_size % num_attention_heads != 0")
if self.num_attention_heads % self.num_key_value_heads != 0: raise ValueError("num_attention_heads % num_key_value_heads != 0")
# --- Model Components (RMSNorm, RoPE funcs, Attention, FeedForward, TransformerBlock, Llama) ---
# V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V
# --- PASTE THE FULL DEFINITIONS OF THE FOLLOWING CLASSES/FUNCTIONS HERE ---
# --- from your model_architecture.py script: ---
#
class RMSNorm(nn.Module):
def __init__(self, dim: int, eps: float = 1e-6): super().__init__(); self.eps = eps; self.weight = nn.Parameter(torch.ones(dim))
def _norm(self, x): return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
def forward(self, x): original_dtype = x.dtype; output = self._norm(x.float()).to(original_dtype); return output * self.weight
def precompute_theta_pos_frequencies(head_dim: int, seq_len: int, device: str | torch.device, theta: float = 10000.0):
if head_dim % 2 != 0: raise ValueError("head_dim must be even for RoPE")
theta_indices = torch.arange(0, head_dim, 2).float(); theta_freqs = 1.0 / (theta**(theta_indices / head_dim))
target_device = torch.device(device) if isinstance(device, str) else device; theta_freqs = theta_freqs.to(target_device)
positions = torch.arange(seq_len, device=target_device).float(); freqs = torch.outer(positions, theta_freqs).float(); return freqs, positions
def apply_rotary_embeddings(x: torch.Tensor, freqs_cis_full: torch.Tensor, positions: torch.Tensor):
positions = positions.long(); max_pos = freqs_cis_full.shape[0]
if torch.max(positions) >= max_pos: positions = torch.clamp(positions, max=max_pos - 1)
freqs = freqs_cis_full[positions]; freqs = freqs.unsqueeze(0).unsqueeze(2)
bsz, seq_len, n_part_heads, head_dim = x.shape; x1 = x[..., : head_dim // 2]; x2 = x[..., head_dim // 2 :]
cos_freqs = torch.cos(freqs).type_as(x); sin_freqs = torch.sin(freqs).type_as(x)
rotated_x1 = x1 * cos_freqs - x2 * sin_freqs; rotated_x2 = x1 * sin_freqs + x2 * cos_freqs
rotated_x = torch.cat([rotated_x1, rotated_x2], dim=-1); return rotated_x.type_as(x)
class Attention(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__(); self.args = args; self.num_heads = args.num_attention_heads; self.num_kv_heads = args.num_key_value_heads
self.head_dim = args.head_dim; self.repeats = self.num_heads // self.num_kv_heads
self.wq = nn.Linear(args.hidden_size, args.num_attention_heads * args.head_dim, bias=False)
self.wk = nn.Linear(args.hidden_size, args.num_key_value_heads * args.head_dim, bias=False)
self.wv = nn.Linear(args.hidden_size, args.num_key_value_heads * args.head_dim, bias=False)
self.wo = nn.Linear(args.num_attention_heads * args.head_dim, args.hidden_size, bias=False)
def _repeat_kv(self, x: torch.Tensor, n_rep: int) -> torch.Tensor:
bsz, n_kv_heads, seqlen, head_dim = x.shape;
if n_rep == 1: return x
return (x[:, :, None, :, :].expand(bsz, n_kv_heads, n_rep, seqlen, head_dim).reshape(bsz, n_kv_heads * n_rep, seqlen, head_dim))
def _create_recency_bias(self, seqlen, full_seqlen, device, dtype, bias_strength=0.1, decay_rate=0.9):
bias = torch.zeros((1, 1, seqlen, full_seqlen), device=device, dtype=dtype); indices = torch.arange(full_seqlen, device=device)
rel_pos = torch.arange(seqlen, device=device).unsqueeze(1) - indices.unsqueeze(0); mask = rel_pos >= 0
decaying_bias = bias_strength * (decay_rate ** (-rel_pos[mask])); bias[:, :, mask] = decaying_bias.type_as(bias); return bias
def forward(self, x: torch.Tensor, freqs_cis_full: torch.Tensor, positions: torch.Tensor, mask: torch.Tensor | None = None, cache: tuple[torch.Tensor, torch.Tensor] | None = None) -> tuple[torch.Tensor, tuple[torch.Tensor, torch.Tensor]]:
bsz, seqlen, _ = x.shape; xq, xk, xv = self.wq(x), self.wk(x), self.wv(x)
xq = xq.view(bsz, seqlen, self.num_heads, self.head_dim); xk = xk.view(bsz, seqlen, self.num_kv_heads, self.head_dim); xv = xv.view(bsz, seqlen, self.num_kv_heads, self.head_dim)
xq = apply_rotary_embeddings(xq, freqs_cis_full, positions); xk = apply_rotary_embeddings(xk, freqs_cis_full, positions)
xk = xk.transpose(1, 2); xv = xv.transpose(1, 2)
if cache is not None: cache_k, cache_v = cache; keys = torch.cat((cache_k.to(xk.device), xk), dim=2); values = torch.cat((cache_v.to(xv.device), xv), dim=2)
else: keys = xk; values = xv
updated_cache = (keys.detach(), values.detach()); keys_repeated = self._repeat_kv(keys, self.repeats); values_repeated = self._repeat_kv(values, self.repeats)
xq = xq.transpose(1, 2); scores = torch.matmul(xq.float(), keys_repeated.transpose(-2, -1).float()) / math.sqrt(self.head_dim)
if self.args.add_recency_bias:
full_seqlen = keys_repeated.shape[-2]; recency_bias = self._create_recency_bias(seqlen, full_seqlen, device=scores.device, dtype=scores.dtype); scores = scores + recency_bias
if mask is not None:
full_seqlen = keys_repeated.shape[-2]; expected_mask_shape_end = (seqlen, full_seqlen)
if mask.shape[-2:] != expected_mask_shape_end:
try: mask_slice = mask[:, :, -seqlen:, :full_seqlen]; scores = scores + mask_slice.float()
except Exception: pass
else: scores = scores + mask.float()
scores = nn.functional.softmax(scores, dim=-1).type_as(xq); output = torch.matmul(scores, values_repeated)
output = output.transpose(1, 2).contiguous().view(bsz, seqlen, -1); output = self.wo(output); return output, updated_cache
class FeedForward(nn.Module):
def __init__(self, args: ModelArgs): super().__init__(); self.w1 = nn.Linear(args.hidden_size, args.intermediate_size, bias=False); self.w3 = nn.Linear(args.hidden_size, args.intermediate_size, bias=False); self.w2 = nn.Linear(args.intermediate_size, args.hidden_size, bias=False)
def forward(self, x: torch.Tensor) -> torch.Tensor: return self.w2(nn.functional.silu(self.w1(x)) * self.w3(x))
class TransformerBlock(nn.Module):
def __init__(self, args: ModelArgs): super().__init__(); self.args = args; self.attention_norm = RMSNorm(args.hidden_size, eps=args.rms_norm_eps); self.attention = Attention(args); self.ffn_norm = RMSNorm(args.hidden_size, eps=args.rms_norm_eps); self.feed_forward = FeedForward(args)
def forward(self, x: torch.Tensor, freqs_cis_full: torch.Tensor, positions: torch.Tensor, mask: torch.Tensor | None = None, cache: tuple[torch.Tensor, torch.Tensor] | None = None) -> tuple[torch.Tensor, tuple[torch.Tensor, torch.Tensor]]:
r, cache = self.attention(self.attention_norm(x), freqs_cis_full, positions, mask, cache); h = x + r; r = self.feed_forward(self.ffn_norm(h)); out = h + r; return out, cache
class Llama(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__(); self.args = args; self.tok_embeddings = nn.Embedding(args.vocab_size, args.hidden_size); self.layers = nn.ModuleList([TransformerBlock(args) for _ in range(args.num_hidden_layers)])
self.norm = RMSNorm(args.hidden_size, eps=args.rms_norm_eps); self.tok_embeddings.weight.requires_grad = True
freqs_cis, _ = precompute_theta_pos_frequencies(args.head_dim, args.max_position_embeddings, device='cpu', theta=args.rope_theta)
self.register_buffer("freqs_cis", freqs_cis, persistent=False)
def forward(self, tokens: torch.Tensor, positions: torch.Tensor):
bsz, seqlen = tokens.shape; h = self.tok_embeddings(tokens); freqs_cis_full = self.freqs_cis.to(h.device); mask = None
if seqlen > 1: mask = torch.full((1, 1, seqlen, seqlen), float("-inf"), device=h.device); mask = torch.triu(mask, diagonal=1).type_as(h)
positions = positions.to(h.device)
for layer in self.layers: h, _ = layer(h, freqs_cis_full, positions, mask, cache=None) # Pass cache=None for non-cached forward
h = self.norm(h); output = F.linear(h, self.tok_embeddings.weight); return output # Use tied weights
@torch.no_grad()
def generate(model: Llama, tokenizer: AutoTokenizer, prompt: str, max_new_tokens: int, temperature: float = 1.0, top_k: int | None = None, top_p: float | None = None):
model.eval() # CORRECTED: Separate line
try:
model_device = next(model.parameters()).device
model_dtype = next(model.parameters()).dtype
except StopIteration:
print("Warning: Model has no parameters. Assuming CPU and float32.")
model_device = torch.device("cpu")
model_dtype = torch.float32
prompt_ids = tokenizer.encode(prompt, add_special_tokens=True); tokens = torch.tensor([prompt_ids], dtype=torch.long, device=model_device)
cache = [(torch.zeros((1, model.args.num_key_value_heads, 0, model.args.head_dim), device=model_device, dtype=model_dtype),
torch.zeros((1, model.args.num_key_value_heads, 0, model.args.head_dim), device=model_device, dtype=model_dtype))
for _ in range(model.args.num_hidden_layers)]
generated_token_ids = []; current_tokens = tokens; print(f"Generating {max_new_tokens} tokens from prompt: '{prompt}'"); print("Output: ", end='')
full_freqs_cis = model.freqs_cis.to(model_device)
for i in range(max_new_tokens):
current_seq_len = current_tokens.shape[1]; start_pos = cache[0][0].shape[2]; positions = torch.arange(start_pos, start_pos + current_seq_len, device=model_device)
current_mask = None;
if i == 0 and current_seq_len > 1: current_mask = torch.full((1, 1, current_seq_len, current_seq_len), float("-inf"), device=model_device); current_mask = torch.triu(current_mask, diagonal=1).type(model_dtype)
h = model.tok_embeddings(current_tokens); updated_cache_list = []
for layer_idx, layer in enumerate(model.layers): h, updated_layer_cache = layer(h, full_freqs_cis, positions, current_mask, cache[layer_idx]); updated_cache_list.append(updated_layer_cache)
cache = updated_cache_list; h = model.norm(h); logits = F.linear(h, model.tok_embeddings.weight)
next_token_logits = logits[:, -1, :]
if temperature == 0: next_token_id = torch.argmax(next_token_logits, dim=-1, keepdim=True)
else:
next_token_logits = next_token_logits / temperature
if top_k is not None and top_k > 0: v, _ = torch.topk(next_token_logits, min(top_k, next_token_logits.size(-1))); next_token_logits[next_token_logits < v[:, [-1]]] = float('-inf')
if top_p is not None and 0.0 < top_p < 1.0:
probs_for_filter = F.softmax(next_token_logits, dim=-1); probs_sort, probs_idx = torch.sort(probs_for_filter, descending=True); probs_sum = torch.cumsum(probs_sort, dim=-1)
mask_top_p = probs_sum > top_p; mask_top_p[..., 0] = False; mask_top_p[..., 1:] = mask_top_p[..., :-1].clone(); indices_to_remove = mask_top_p.scatter(1, probs_idx, mask_top_p); next_token_logits[indices_to_remove] = float('-inf')
probs = F.softmax(next_token_logits, dim=-1); next_token_id = torch.multinomial(probs, num_samples=1)
if tokenizer.eos_token_id is not None and next_token_id.item() == tokenizer.eos_token_id: print("\n[EOS token reached]"); break
next_token_id_item = next_token_id.item(); generated_token_ids.append(next_token_id_item); current_tokens = next_token_id.clone()
print(tokenizer.decode([next_token_id_item]), end='', flush=True)
if len(generated_token_ids) >= max_new_tokens: break
print("\n--- Generation Complete ---"); final_token_ids = prompt_ids + generated_token_ids; full_generated_text = tokenizer.decode(final_token_ids, skip_special_tokens=False)
print(f"\nFull generated text:\n{full_generated_text}"); return full_generated_text
# --- End Placeholders ---
# --- Main Inference Execution ---
if __name__ == "__main__":
# --- Configuration for Inference ---
# --- !! USE SPECIFIC WINDOWS PATH !! ---
raw_checkpoint_path = r".\step_800.pt" # <<< CHANGED to step 1200
# --- Normalize the path ---
checkpoint_path = os.path.normpath(raw_checkpoint_path)
# --- End Adjust ---
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(f"\n--- Inference Setup ---")
print(f"Using device: {device}")
print(f"Attempting to load checkpoint: {checkpoint_path}")
# --- Load Checkpoint and Model Args ---
if not os.path.exists(checkpoint_path):
# Removed the fallback logic as we are specifying an exact path
exit(f"Error: Checkpoint file not found at the specified path: {checkpoint_path}")
try:
# Load checkpoint to CPU first
checkpoint = torch.load(checkpoint_path, map_location='cpu', weights_only=False) # weights_only=False needed for ModelArgs
# Load args dict and instantiate ModelArgs
saved_args_data = checkpoint.get('model_args', checkpoint.get('model_args_dict')) # Check both keys
if not saved_args_data: exit("Error: model_args not found in checkpoint.")
if not isinstance(saved_args_data, dict): saved_args_dict = dataclasses.asdict(saved_args_data)
else: saved_args_dict = saved_args_data
init_field_names = {f.name for f in dataclasses.fields(ModelArgs) if f.init}
filtered_args_dict = {k: v for k, v in saved_args_dict.items() if k in init_field_names}
config_inf = ModelArgs(**filtered_args_dict)
print(f"Loaded model config from checkpoint: {config_inf}")
# --- Instantiate Model ---
model_inf = Llama(config_inf) # Instantiate on CPU
print("Model instantiated on CPU.")
# --- Load Weights ---
model_inf.load_state_dict(checkpoint['model_state_dict'])
print("Model weights loaded.")
model_inf.to(device) # Move model to target device
print(f"Model moved to {device}.")
# --- Prepare for Inference ---
model_inf.eval()
if device.type == 'cuda':
try: model_inf = model_inf.half(); print("Converted loaded model to float16 for inference.")
except Exception as e: print(f"Could not convert model to float16: {e}")
except Exception as e: exit(f"Error loading checkpoint or instantiating model: {e}")
# --- Load Tokenizer ---
tokenizer_name_inf = "deepseek-ai/DeepSeek-R1"
print(f"Loading tokenizer: {tokenizer_name_inf}")
try:
tokenizer_inf = AutoTokenizer.from_pretrained(tokenizer_name_inf, trust_remote_code=True)
if tokenizer_inf.pad_token is None:
if tokenizer_inf.eos_token: tokenizer_inf.pad_token = tokenizer_inf.eos_token
else: tokenizer_inf.add_special_tokens({'pad_token': '[PAD]'})
print("Tokenizer loaded.")
except Exception as e: exit(f"Error loading tokenizer: {e}")
# --- Run Generation ---
print(f"\n--- Running Generation with Loaded Checkpoint ({os.path.basename(checkpoint_path)}) ---") # Updated print
prompt_inf = "Valkyria Chronicles is a tactical role-playing game developed and published by"
max_gen_len = 100
gen_temperature = 0.7
gen_top_k = 50
gen_top_p = 0.9
try:
start_time_inf = time.time()
_ = generate(
model=model_inf, tokenizer=tokenizer_inf, prompt=prompt_inf,
max_new_tokens=max_gen_len, temperature=gen_temperature,
top_k=gen_top_k, top_p=gen_top_p
)
end_time_inf = time.time()
print(f"\nInference duration: {datetime.timedelta(seconds=int(end_time_inf - start_time_inf))}")
print("\n(Output quality depends heavily on limited training. Expect limited coherence.)")
except Exception as e: print(f"\nAn error occurred during generation: {e}"); traceback.print_exc()
print("\n--- Inference Script Section Finished ---") |