File size: 32,372 Bytes
8da4c75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:594028
- loss:MultipleNegativesRankingLoss
base_model: intfloat/multilingual-e5-large-instruct
widget:
- source_sentence: '''আমি'' শব্দটি কোন লিঙ্গ?

    A. উভয় লিঙ্গ

    B. ক্লীব লিঙ্গ

    C. পুংলিঙ্গ

    D. স্ত্রী লিঙ্গ'
  sentences:
  - F.P. Dobroslavin, tibbin müxtəlif sahələri üzrə tanınmış bir alimdir, ancaq daha
    çox baş vermiş tədqiqatlara görə seçilir. Onun əməyinin sanitar-gigiyenik sahəyə
    təsiri əhəmiyyətlidir.
  - 'বাংলা ভাষায় শব্দগুলোর লিঙ্গ সাধারণত তিনটি মূল শ্রেণিতে ভাগ হয়: পুংলিঙ্গ (পুরুষ),
    স্ত্রী লিঙ্গ (মহিলা), এবং ক্লীব লিঙ্গ (যার কোনো লিঙ্গ নেই)।'
  - Waves are disturbances that transfer energy from one place to another without
    transferring matter. Think of a ripple on a pond  the water molecules don't travel
    across the pond with the ripple; they mostly move up and down as the energy passes
    through them.
- source_sentence: '企业产品组合中所拥有的产品线数目是

    A. 产品组合的宽度

    B. 产品组合的相关性

    C. 产品组合的深度

    D. 产品组合的长度'
  sentences:
  - 产品组合的宽度(Width)是指企业拥有的产品线数目。
  - This fluid is produced by the walls of the vagina and the Bartholin's glands.
  - "### Assumption of Risk Defined  \nAssumption of risk is a legal doctrine used\
    \ in tort law that can limit or bar recovery in negligence claims. This doctrine\
    \ suggests that if a person voluntarily engages in a risky activity, knowing the\
    \ risks involved, they cannot hold another party responsible for resulting injuries.\
    \ Common scenarios where this applies include contact sports and recreational\
    \ activities, where participants understand the inherent hazards.  \n\n### Elements\
    \ of Assumption of Risk  \nTo successfully argue assumption of risk, certain elements\
    \ must be established:  \n1. **Knowledge of the Risk**: The individual must have\
    \ actual or constructive knowledge of the risk involved.  \n2. **Voluntary Exposure**:\
    \ The individual must voluntarily choose to expose themselves to that risk.  \n\
    3. **Informed Consent**: The individual must have consented to take that risk\
    \ despite being aware of it.  \n\n### Contributory Negligence  \nContributory\
    \ negligence is a legal concept that exists in some jurisdictions where a plaintiff's\
    \ own negligence contributes to their injury. Under this doctrine, if the plaintiff\
    \ is found to have played any part in their injury, they may be barred from recovering\
    \ damages, or the damage award could be reduced. It emphasizes the responsibility\
    \ of the injured party to exercise reasonable care for their own safety.  \n\n\
    ### Interaction of Assumption of Risk and Contributory Negligence  \nIn many jurisdictions,\
    \ both assumption of risk and contributory negligence can coexist as defenses.\
    \ However, some legal systems assert that if a plaintiff is found contributorily\
    \ negligent, they cannot also claim assumed risk for the same incident. This overlap\
    \ can complicate cases since the determination of the plaintiff's awareness and\
    \ behavior prior to the accident can alter the outcome.  \n\n### Legal Standard\
    \ for Warnings and Liability  \nIn negligence cases, the adequacy of warnings\
    \ provided is crucial. Courts often assess whether the warnings were sufficient\
    \ to inform the individual of the specific hazards present. A simple sign may\
    \ not meet the threshold if it fails to clearly communicate the danger involved,\
    \ especially if the harm is not immediately obvious or if the context (e.g., a\
    \ crowded street) suggests additional risks."
- source_sentence: "While shopping at a grocery store, a customer tripped over a broken\
    \ tile, fell, and suffered a concussion. A few months after the accident, the\
    \ customer's attorney deposed a store employee. In the deposition, the employee\
    \ testified, \"I'd been telling the store manager for years to get that broken\
    \ tile fixed, but he wouldn't do it. \" The employee died in an automobile accident\
    \ after being deposed. At trial, the deposition should be\nA. admitted, as a dying\
    \ declaration. \nB. admitted, as former testimony. \nC. not admitted, because\
    \ it is hearsay not within any exception. \nD. not admitted, because the employee\
    \ is not available for cross-examination. "
  sentences:
  - In the context of human evolution, brain size is often compared to body size in
    a measurement called the encephalization quotient (EQ). This measure assesses
    the expected brain size for an animal of a given body size compared to actual
    brain size. An increase in EQ among hominins is often linked to advancements in
    cognitive abilities, such as problem-solving and social interaction.
  - Another exception to the hearsay rule, though often with specific requirements
    related to the declarant's belief of impending death, is the dying declaration.
  - In assessing moral actions, it is also essential to consider societal norms. In
    the U.S. context in 2020, moral standards often emphasize community well-being
    and individual rights. An action like diverting emergency supplies would likely
    be condemned in most social circles, while stepping out of rhythm during a line
    dancewould not commonly qualify as a serious moral offense. Thus, moral wrongness
    is often context-dependent and tied closely to consequences for individuals and
    society.
- source_sentence: 'Recent research on hominid species dating from the Middle Pliocene
    indicates there was (as of 2020):

    A. multiple hominid species but with limited diversity.

    B. a single species with no diversity.

    C. decreased species diversity but increased numbers of hammerstones and flakes,
    indicating stone tool manufacture.

    D. a single dominant species that outcompeted all others, leading to decreased
    diversity.

    E. increased species diversity due to a prolonged ice age followed by a severe
    drought.

    F. decreased species diversity due to a prolonged ice age followed by a severe
    drought.

    G. a great amount of species diversity, or a single species that exhibited a lot
    of diversity.

    H. increased species diversity but with decreased population numbers due to harsh
    climate conditions.

    I. increased species diversity but decreased numbers of hammerstones and flakes,
    indicating less stone tool manufacture.

    J. very little species diversity during this period and very few hominids.'
  sentences:
  - Hammerstones and flakes are artifacts associated with early stone tool technology.
    Hammerstones are hard rocks used to strike other stones, while flakes are the
    sharp pieces produced from such strikes, which could be utilized for tasks like
    cutting or scraping, indicating early cognitive and manual skills in tool-making
    among certain species.
  - The Doppler effect is a phenomenon that occurs when the source of a wave and the
    observer are moving relative to each other. It results in a change in the observed
    frequency of the wave compared to the source frequency.
  - Counseling and therapeutic interventions can play a role in addressing student
    behavioral issues, but they should be considered within a broader context of classroom
    dynamics and educational strategies. Counseling might help the child develop coping
    mechanisms, social skills, and emotional regulation strategies. However, the effectiveness
    of counseling is often maximized when the child is supported in the classroom
    environment as well, suggesting that changes to the teacher's approach could lead
    to improved outcomes.
- source_sentence: 'Hipotalamusi NUK kontrollon sekretimin e hormoneve:

    A. FSH dhe LH

    B. te rritjes(GH)

    C. ACTH

    D. te pankreasit'
  sentences:
  - In the context of estate planning and inheritance law, a will serves as a legal
    document outlining how a person's property and assets will be distributed after
    their death. The interpretation of a will often hinges on the intent of the testator,
    or the person who made the will, which can affect how property interests are determined.
  - State laws that regulate matters of legitimate local concern but have an incidental
    effect on interstate commerce are subject to a less strict balancing test. Under
    this test, a state law will be upheld unless the burden imposed on interstate
    commerce is clearly excessive in relation to the putative local benefits.
  - Hipotalamusi është një pjesë e trurit  ndodhet nën talamusin. Ai luan një rol
    kryesor  lidhjen e sistemit nervor me sistemin endokrin përmes gjëndrës  hipofizës.
datasets:
- DoDucAnh/mcqa-rag-finetune
pipeline_tag: sentence-similarity
library_name: sentence-transformers
---

# SentenceTransformer based on intfloat/multilingual-e5-large-instruct

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-large-instruct](https://huggingface.co/intfloat/multilingual-e5-large-instruct) on the [mcqa-rag-finetune](https://huggingface.co/datasets/DoDucAnh/mcqa-rag-finetune) dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [intfloat/multilingual-e5-large-instruct](https://huggingface.co/intfloat/multilingual-e5-large-instruct) <!-- at revision 84344a23ee1820ac951bc365f1e91d094a911763 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 1024 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - [mcqa-rag-finetune](https://huggingface.co/datasets/DoDucAnh/mcqa-rag-finetune)
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'Hipotalamusi NUK kontrollon sekretimin e hormoneve:\nA. FSH dhe LH\nB. te rritjes(GH)\nC. ACTH\nD. te pankreasit',
    'Hipotalamusi është një pjesë e trurit që ndodhet nën talamusin. Ai luan një rol kryesor në lidhjen e sistemit nervor me sistemin endokrin përmes gjëndrës së hipofizës.',
    'State laws that regulate matters of legitimate local concern but have an incidental effect on interstate commerce are subject to a less strict balancing test. Under this test, a state law will be upheld unless the burden imposed on interstate commerce is clearly excessive in relation to the putative local benefits.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### mcqa-rag-finetune

* Dataset: [mcqa-rag-finetune](https://huggingface.co/datasets/DoDucAnh/mcqa-rag-finetune) at [d1f5446](https://huggingface.co/datasets/DoDucAnh/mcqa-rag-finetune/tree/d1f5446a80c070fb8e1abfffef8a9dace426026b)
* Size: 594,028 training samples
* Columns: <code>anchor</code> and <code>positive</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                               | positive                                                                            |
  |:--------|:-------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
  | type    | string                                                                               | string                                                                              |
  | details | <ul><li>min: 22 tokens</li><li>mean: 105.96 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 12 tokens</li><li>mean: 70.95 tokens</li><li>max: 478 tokens</li></ul> |
* Samples:
  | anchor                                                                                                | positive                                                                                                                                                                                                                                                                                                                                                                                                                                  |
  |:------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>Find all c in Z_3 such that Z_3[x]/(x^2 + c) is a field.<br>A. 0<br>B. 1<br>C. 2<br>D. 3</code> | <code>The notation Z_3 refers to the finite field with three elements, often denoted as {0, 1, 2}. This field operates under modular arithmetic, specifically modulo 3. Elements in Z_3 can be added and multiplied according to the rules of modulo 3, where any number can wrap around upon reaching 3.</code>                                                                                                                          |
  | <code>Find all c in Z_3 such that Z_3[x]/(x^2 + c) is a field.<br>A. 0<br>B. 1<br>C. 2<br>D. 3</code> | <code>A field is a set equipped with two operations, addition and multiplication, satisfying certain properties: associativity, commutativity, distributivity, the existence of additive and multiplicative identities, and the existence of additive inverses and multiplicative inverses (for all elements except the zero element). In order for Z_3[x]/(f(x)) to be a field, the polynomial f(x) must be irreducible over Z_3.</code> |
  | <code>Find all c in Z_3 such that Z_3[x]/(x^2 + c) is a field.<br>A. 0<br>B. 1<br>C. 2<br>D. 3</code> | <code>The expression Z_3[x] indicates the set of all polynomials with coefficients in Z_3. A polynomial is said to be irreducible over Z_3 if it cannot be factored into the product of two non-constant polynomials with coefficients in Z_3. In the case of quadratic polynomials like x^2 + c, irreducibility depends on whether it has any roots in the field Z_3.</code>                                                             |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim"
  }
  ```

### Evaluation Dataset

#### mcqa-rag-finetune

* Dataset: [mcqa-rag-finetune](https://huggingface.co/datasets/DoDucAnh/mcqa-rag-finetune) at [d1f5446](https://huggingface.co/datasets/DoDucAnh/mcqa-rag-finetune/tree/d1f5446a80c070fb8e1abfffef8a9dace426026b)
* Size: 1,000 evaluation samples
* Columns: <code>anchor</code> and <code>positive</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                              | positive                                                                           |
  |:--------|:------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                              | string                                                                             |
  | details | <ul><li>min: 22 tokens</li><li>mean: 98.74 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 59.88 tokens</li><li>max: 501 tokens</li></ul> |
* Samples:
  | anchor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | positive                                                                                                                                                                                                                                                                                                                                                                                                                          |
  |:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>ക്രൂരകോഷ്ഠം ഉള്ള ഒരാളിൽ കോപിച്ചിരിക്കുന്ന ദോഷം താഴെപ്പറയുന്നവയിൽ ഏതാണ്?<br>A. കഫം<br>B. പിത്തം<br>C. വാതം<br>D. രക്തം</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <code>ഓരോ ദോഷത്തിനും അതിന്റേതായ സ്വഭാവങ്ങളും ശരീരത്തിൽ അത് ഉണ്ടാക്കുന്ന ഫലങ്ങളും ഉണ്ട്.</code>                                                                                                                                                                                                                                                                                                                                    |
  | <code>Melyik tényező nem befolyásolja a fagylalt keresleti függvényét?<br>A. A fagylalt árának változása.<br>B. Mindegyik tényező befolyásolja.<br>C. A jégkrém árának változása.<br>D. A fagylalttölcsér árának változása.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <code>A keresleti függvény negatív meredekségű, ami azt jelenti, hogy az ár növekedésével a keresett mennyiség csökken (csökkenő kereslet törvénye).</code>                                                                                                                                                                                                                                                                       |
  | <code>In contrast to _______, _______ aim to reward favourable behaviour by companies. The success of such campaigns have been heightened through the use of ___________, which allow campaigns to facilitate the company in achieving _________ .<br>A. Boycotts, Buyalls, Blockchain technology, Increased Sales<br>B. Buycotts, Boycotts, Digital technology, Decreased Sales<br>C. Boycotts, Buycotts, Digital technology, Decreased Sales<br>D. Buycotts, Boycotts, Blockchain technology, Charitable donations<br>E. Boycotts, Buyalls, Blockchain technology, Charitable donations<br>F. Boycotts, Buycotts, Digital technology, Increased Sales<br>G. Buycotts, Boycotts, Digital technology, Increased Sales<br>H. Boycotts, Buycotts, Physical technology, Increased Sales<br>I. Buycotts, Buyalls, Blockchain technology, Charitable donations<br>J. Boycotts, Buycotts, Blockchain technology, Decreased Sales</code> | <code>**Consumer Activism**: This term refers to the actions taken by consumers to promote social, political, or environmental causes. These actions can include boycotting certain companies or buycotting others, influencing market dynamics based on ethical considerations. The effectiveness of consumer activism can vary but has gained prominence in recent years with increased visibility through social media.</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim"
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 12
- `per_device_eval_batch_size`: 12
- `learning_rate`: 3e-05
- `num_train_epochs`: 1
- `warmup_steps`: 5000
- `fp16`: True
- `load_best_model_at_end`: True

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 12
- `per_device_eval_batch_size`: 12
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 3e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 5000
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch    | Step     | Training Loss | Validation Loss |
|:--------:|:--------:|:-------------:|:---------------:|
| **0.05** | **2476** | **0.1209**    | **0.0347**      |
| 0.1000   | 4952     | 0.0737        | 0.0459          |
| 0.1501   | 7428     | 0.087         | 0.0732          |
| 0.2001   | 9904     | 0.0825        | 0.1209          |
| 0.2501   | 12380    | 0.0783        | 0.0934          |
| 0.3001   | 14856    | 0.071         | 0.0793          |
| 0.3501   | 17332    | 0.0661        | 0.0855          |
| 0.4001   | 19808    | 0.0652        | 0.0964          |
| 0.4502   | 22284    | 0.063         | 0.0892          |
| 0.5002   | 24760    | 0.056         | 0.0923          |
| 0.5502   | 27236    | 0.0509        | 0.1016          |
| 0.6002   | 29712    | 0.045         | 0.0918          |
| 0.6502   | 32188    | 0.0472        | 0.0896          |
| 0.7002   | 34664    | 0.0396        | 0.0959          |
| 0.7503   | 37140    | 0.0371        | 0.0819          |
| 0.8003   | 39616    | 0.0341        | 0.0845          |
| 0.8503   | 42092    | 0.0344        | 0.0790          |
| 0.9003   | 44568    | 0.0288        | 0.0863          |
| 0.9503   | 47044    | 0.03          | 0.0767          |

* The bold row denotes the saved checkpoint.

### Framework Versions
- Python: 3.11.9
- Sentence Transformers: 4.1.0
- Transformers: 4.52.3
- PyTorch: 2.7.0+cu126
- Accelerate: 1.7.0
- Datasets: 3.6.0
- Tokenizers: 0.21.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->