--- library_name: transformers base_model: cardiffnlp/twitter-roberta-base-sentiment tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: test_trainer results: [] --- # test_trainer This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-sentiment](https://huggingface.co/cardiffnlp/twitter-roberta-base-sentiment) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.2791 - Accuracy: 0.794 - F1: 0.7938 - Precision: 0.7958 - Recall: 0.7986 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 64 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.4814 | 1.0 | 55 | 0.5014 | 0.793 | 0.7925 | 0.7935 | 0.8008 | | 0.3957 | 2.0 | 110 | 0.5091 | 0.806 | 0.8050 | 0.8120 | 0.8030 | | 0.2667 | 3.0 | 165 | 0.6027 | 0.815 | 0.8149 | 0.8195 | 0.8148 | | 0.1823 | 4.0 | 220 | 0.7652 | 0.802 | 0.8015 | 0.8021 | 0.8088 | | 0.1114 | 5.0 | 275 | 0.8443 | 0.808 | 0.8080 | 0.8105 | 0.8117 | | 0.0862 | 6.0 | 330 | 0.9307 | 0.802 | 0.8021 | 0.8043 | 0.8072 | | 0.0422 | 7.0 | 385 | 1.0603 | 0.792 | 0.7919 | 0.7943 | 0.7958 | | 0.0323 | 8.0 | 440 | 1.1902 | 0.793 | 0.7928 | 0.7948 | 0.7982 | | 0.0195 | 9.0 | 495 | 1.2363 | 0.791 | 0.7909 | 0.7941 | 0.7941 | | 0.0172 | 10.0 | 550 | 1.2791 | 0.794 | 0.7938 | 0.7958 | 0.7986 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3