--- library_name: transformers language: - nan license: apache-2.0 base_model: Helsinki-NLP/opus-mt-en-ZH tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_17_0 metrics: - bleu model-index: - name: helsinki_new_ver3 results: [] --- # helsinki_new_ver3 This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-ZH](https://huggingface.co/Helsinki-NLP/opus-mt-en-ZH) on the mozilla-foundation/common_voice_17_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.7044 - Bleu: 2.2015 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 23000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.9675 | 0.32 | 1000 | 1.0573 | 0.7690 | | 0.9217 | 0.64 | 2000 | 0.9924 | 1.3531 | | 0.8782 | 0.96 | 3000 | 0.9463 | 1.8407 | | 0.8377 | 1.28 | 4000 | 0.9078 | 3.0190 | | 0.8304 | 1.6 | 5000 | 0.8765 | 2.1759 | | 0.8114 | 1.92 | 6000 | 0.8479 | 3.2072 | | 0.7735 | 2.24 | 7000 | 0.8247 | 4.0669 | | 0.7667 | 2.56 | 8000 | 0.8051 | 5.6676 | | 0.7547 | 2.88 | 9000 | 0.7882 | 4.2755 | | 0.7151 | 3.2 | 10000 | 0.7712 | 5.7800 | | 0.7103 | 3.52 | 11000 | 0.7591 | 6.0659 | | 0.7095 | 3.84 | 12000 | 0.7458 | 7.0038 | | 0.7044 | 4.16 | 13000 | 0.7351 | 1.7120 | | 0.6717 | 4.48 | 14000 | 0.7250 | 8.0104 | | 0.6856 | 4.8 | 15000 | 0.7169 | 2.1741 | | 0.6755 | 5.12 | 16000 | 0.7097 | 2.1614 | | 0.6635 | 5.44 | 17000 | 0.7044 | 2.2015 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.5.1 - Tokenizers 0.21.1