--- library_name: transformers language: - nan license: apache-2.0 base_model: Helsinki-NLP/opus-mt-en-ZH tags: - generated_from_trainer datasets: - sarahwei/Taiwanese-Minnan-Example-Sentences metrics: - bleu model-index: - name: helsinki_new_ver1 results: [] --- # helsinki_new_ver1 This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-ZH](https://huggingface.co/Helsinki-NLP/opus-mt-en-ZH) on the sarahwei/Taiwanese-Minnan-Example-Sentences dataset. It achieves the following results on the evaluation set: - Loss: 0.4153 - Bleu: 0.0081 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 20000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | |:-------------:|:-------:|:-----:|:---------------:|:------:| | 0.8615 | 0.5656 | 1000 | 0.5171 | 0.0028 | | 0.809 | 1.1312 | 2000 | 0.4937 | 0.0035 | | 0.802 | 1.6968 | 3000 | 0.4801 | 0.0038 | | 0.763 | 2.2624 | 4000 | 0.4691 | 0.0052 | | 0.7475 | 2.8281 | 5000 | 0.4607 | 0.0053 | | 0.7363 | 3.3937 | 6000 | 0.4534 | 0.0057 | | 0.7263 | 3.9593 | 7000 | 0.4470 | 0.0057 | | 0.7166 | 4.5249 | 8000 | 0.4413 | 0.0062 | | 0.7119 | 5.0905 | 9000 | 0.4363 | 0.0061 | | 0.7097 | 5.6561 | 10000 | 0.4324 | 0.0064 | | 0.6921 | 6.2217 | 11000 | 0.4289 | 0.0070 | | 0.692 | 6.7873 | 12000 | 0.4258 | 0.0064 | | 0.6773 | 7.3529 | 13000 | 0.4232 | 0.0067 | | 0.6918 | 7.9186 | 14000 | 0.4210 | 0.0073 | | 0.6789 | 8.4842 | 15000 | 0.4194 | 0.0078 | | 0.6801 | 9.0498 | 16000 | 0.4178 | 0.0072 | | 0.6734 | 9.6154 | 17000 | 0.4167 | 0.0070 | | 0.6808 | 10.1810 | 18000 | 0.4159 | 0.0079 | | 0.669 | 10.7466 | 19000 | 0.4155 | 0.0081 | | 0.6667 | 11.3122 | 20000 | 0.4153 | 0.0081 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.5.1 - Tokenizers 0.21.1