File size: 1,825 Bytes
91ef1ad 4155145 91ef1ad 4155145 91ef1ad 4155145 91ef1ad 4155145 91ef1ad 4155145 91ef1ad 4155145 91ef1ad 4155145 91ef1ad 4155145 91ef1ad 4155145 91ef1ad 4155145 91ef1ad 4155145 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
---
library_name: transformers
tags:
- video
- feature
- face
license: cc
base_model:
- ControlNet/MARLIN
pipeline_tag: feature-extraction
---
# MARLIN: Masked Autoencoder for facial video Representation LearnINg
This repo is the official PyTorch implementation for the paper
[MARLIN: Masked Autoencoder for facial video Representation LearnINg](https://openaccess.thecvf.com/content/CVPR2023/html/Cai_MARLIN_Masked_Autoencoder_for_Facial_Video_Representation_LearnINg_CVPR_2023_paper) (CVPR 2023) ([arXiv](https://arxiv.org/abs/2211.06627)).
## Use `transformers` (HuggingFace) for Feature Extraction
Requirements:
- Python
- PyTorch
- transformers
- einops
Currently the huggingface model is only for direct feature extraction without any video pre-processing (e.g. face detection, cropping, strided window, etc).
```python
import torch
from transformers import AutoModel
model = AutoModel.from_pretrained(
"ControlNet/marlin_vit_base_ytf", # or other variants
trust_remote_code=True
)
tensor = torch.rand([1, 3, 16, 224, 224]) # (B, C, T, H, W)
output = model(tensor) # torch.Size([1, 1568, 384])
```
## License
This project is under the CC BY-NC 4.0 license. See [LICENSE](LICENSE) for details.
## References
If you find this work useful for your research, please consider citing it.
```bibtex
@inproceedings{cai2022marlin,
title = {MARLIN: Masked Autoencoder for facial video Representation LearnINg},
author = {Cai, Zhixi and Ghosh, Shreya and Stefanov, Kalin and Dhall, Abhinav and Cai, Jianfei and Rezatofighi, Hamid and Haffari, Reza and Hayat, Munawar},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
year = {2023},
month = {June},
pages = {1493-1504},
doi = {10.1109/CVPR52729.2023.00150},
publisher = {IEEE},
}
```
|