Upload combined_stable_diffusion.py with huggingface_hub
Browse files- combined_stable_diffusion.py +475 -0
combined_stable_diffusion.py
ADDED
@@ -0,0 +1,475 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from diffusers import DiffusionPipeline, DDPMScheduler
|
3 |
+
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
|
4 |
+
from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
|
5 |
+
from diffusers.image_processor import VaeImageProcessor
|
6 |
+
from huggingface_hub import PyTorchModelHubMixin
|
7 |
+
from transformers import CLIPTextModel, CLIPImageProcessor, CLIPTextModelWithProjection
|
8 |
+
from diffusers.models.attention_processor import (
|
9 |
+
AttnProcessor2_0,
|
10 |
+
FusedAttnProcessor2_0,
|
11 |
+
XFormersAttnProcessor,
|
12 |
+
)
|
13 |
+
|
14 |
+
|
15 |
+
class CombinedStableDiffusionXL(
|
16 |
+
DiffusionPipeline,
|
17 |
+
PyTorchModelHubMixin
|
18 |
+
):
|
19 |
+
"""
|
20 |
+
A Stable Diffusion model wrapper that provides functionality for text-to-image synthesis,
|
21 |
+
noise scheduling, latent space manipulation, and image decoding.
|
22 |
+
"""
|
23 |
+
def __init__(
|
24 |
+
self,
|
25 |
+
original_unet: torch.nn.Module,
|
26 |
+
fine_tuned_unet: torch.nn.Module,
|
27 |
+
scheduler: DDPMScheduler,
|
28 |
+
vae: torch.nn.Module,
|
29 |
+
tokenizer: CLIPTextModel,
|
30 |
+
tokenizer_2: CLIPTextModel,
|
31 |
+
text_encoder: CLIPTextModelWithProjection,
|
32 |
+
text_encoder_2: CLIPTextModelWithProjection,
|
33 |
+
) -> None:
|
34 |
+
|
35 |
+
super().__init__()
|
36 |
+
|
37 |
+
self.register_modules(
|
38 |
+
tokenizer=tokenizer,
|
39 |
+
tokenizer_2=tokenizer_2,
|
40 |
+
text_encoder=text_encoder,
|
41 |
+
text_encoder_2=text_encoder_2,
|
42 |
+
original_unet=original_unet,
|
43 |
+
fine_tuned_unet=fine_tuned_unet,
|
44 |
+
scheduler=scheduler,
|
45 |
+
vae=vae,
|
46 |
+
)
|
47 |
+
|
48 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
49 |
+
self.image_processor = VaeImageProcessor(
|
50 |
+
vae_scale_factor=self.vae_scale_factor
|
51 |
+
)
|
52 |
+
self.resolution = 1024
|
53 |
+
|
54 |
+
def _get_negative_prompts(
|
55 |
+
self, batch_size: int
|
56 |
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
57 |
+
inputs_ids_1 = self.tokenizer(
|
58 |
+
[""] * batch_size,
|
59 |
+
max_length=self.tokenizer.model_max_length,
|
60 |
+
padding="max_length",
|
61 |
+
truncation=True,
|
62 |
+
return_tensors="pt",
|
63 |
+
).input_ids
|
64 |
+
|
65 |
+
input_ids_2 = self.tokenizer_2(
|
66 |
+
[""] * batch_size,
|
67 |
+
max_length=self.tokenizer.model_max_length,
|
68 |
+
padding="max_length",
|
69 |
+
truncation=True,
|
70 |
+
return_tensors="pt",
|
71 |
+
).input_ids
|
72 |
+
return inputs_ids_1, input_ids_2
|
73 |
+
|
74 |
+
def _get_encoder_hidden_states(
|
75 |
+
self,
|
76 |
+
tokenized_prompts_1: torch.Tensor,
|
77 |
+
tokenized_prompts_2: torch.Tensor,
|
78 |
+
do_classifier_free_guidance: bool = False
|
79 |
+
) -> torch.Tensor:
|
80 |
+
text_input_ids_list = [
|
81 |
+
tokenized_prompts_1,
|
82 |
+
tokenized_prompts_2
|
83 |
+
]
|
84 |
+
batch_size = text_input_ids_list[0].size(0)
|
85 |
+
|
86 |
+
if do_classifier_free_guidance:
|
87 |
+
negative_prompts = [
|
88 |
+
embed.to(text_input_ids_list[0].device)
|
89 |
+
for embed in self._get_negative_prompts(batch_size)
|
90 |
+
]
|
91 |
+
|
92 |
+
text_input_ids_list = [
|
93 |
+
torch.cat(
|
94 |
+
[
|
95 |
+
negative_prompt,
|
96 |
+
text_input,
|
97 |
+
]
|
98 |
+
)
|
99 |
+
for text_input, negative_prompt in zip(
|
100 |
+
text_input_ids_list, negative_prompts
|
101 |
+
)
|
102 |
+
]
|
103 |
+
prompt_embeds_list = []
|
104 |
+
|
105 |
+
text_encoders = [self.text_encoder, self.text_encoder_2]
|
106 |
+
for text_encoder, text_input_ids in zip(text_encoders, text_input_ids_list):
|
107 |
+
prompt_embeds = text_encoder(
|
108 |
+
text_input_ids.to(text_encoder.device),
|
109 |
+
output_hidden_states=True,
|
110 |
+
return_dict=False,
|
111 |
+
)
|
112 |
+
pooled_prompt_embeds = prompt_embeds[0]
|
113 |
+
prompt_embeds = prompt_embeds[-1][-2]
|
114 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
115 |
+
prompt_embeds = prompt_embeds.view(bs_embed, seq_len, -1)
|
116 |
+
prompt_embeds_list.append(prompt_embeds)
|
117 |
+
|
118 |
+
prompt_embeds = torch.cat(prompt_embeds_list, dim=-1)
|
119 |
+
pooled_prompt_embeds = pooled_prompt_embeds.view(bs_embed, -1)
|
120 |
+
return prompt_embeds, pooled_prompt_embeds
|
121 |
+
|
122 |
+
def _get_unet_prediction(
|
123 |
+
self,
|
124 |
+
latent_model_input: torch.Tensor,
|
125 |
+
timestep: int,
|
126 |
+
encoder_hidden_states: torch.Tensor,
|
127 |
+
) -> torch.Tensor:
|
128 |
+
"""
|
129 |
+
Return unet noise prediction
|
130 |
+
|
131 |
+
Args:
|
132 |
+
latent_model_input (torch.Tensor): Unet latents input
|
133 |
+
timestep (int): noise scheduler timestep
|
134 |
+
encoder_hidden_states (tuple[torch.Tensor, torch.Tensor]): Text encoder hidden states
|
135 |
+
|
136 |
+
Returns:
|
137 |
+
torch.Tensor: noise prediction
|
138 |
+
"""
|
139 |
+
unet = self.original_unet if self._use_original_unet else self.fine_tuned_unet
|
140 |
+
|
141 |
+
prompt_embeds, pooled_prompt_embeds = encoder_hidden_states
|
142 |
+
target_size = torch.tensor(
|
143 |
+
[
|
144 |
+
[self.resolution, self.resolution]
|
145 |
+
for _ in range(latent_model_input.size(0))
|
146 |
+
],
|
147 |
+
device=latent_model_input.device,
|
148 |
+
dtype=torch.float32,
|
149 |
+
)
|
150 |
+
add_time_ids = torch.cat(
|
151 |
+
[target_size, torch.zeros_like(target_size), target_size], dim=1
|
152 |
+
)
|
153 |
+
|
154 |
+
unet_added_conditions = {
|
155 |
+
"time_ids": add_time_ids,
|
156 |
+
"text_embeds": pooled_prompt_embeds,
|
157 |
+
}
|
158 |
+
|
159 |
+
return unet(
|
160 |
+
latent_model_input,
|
161 |
+
timestep,
|
162 |
+
encoder_hidden_states=prompt_embeds,
|
163 |
+
added_cond_kwargs=unet_added_conditions,
|
164 |
+
).sample
|
165 |
+
|
166 |
+
def get_noise_prediction(
|
167 |
+
self,
|
168 |
+
latents: torch.Tensor,
|
169 |
+
timestep_index: int,
|
170 |
+
encoder_hidden_states: torch.Tensor,
|
171 |
+
do_classifier_free_guidance: bool = False,
|
172 |
+
detach_main_path: bool = False,
|
173 |
+
):
|
174 |
+
"""
|
175 |
+
Return noise prediction
|
176 |
+
|
177 |
+
Args:
|
178 |
+
latents (torch.Tensor): Image latents
|
179 |
+
timestep_index (int): noise scheduler timestep index
|
180 |
+
encoder_hidden_states (torch.Tensor): Text encoder hidden states
|
181 |
+
do_classifier_free_guidance (bool) Whether to do classifier free guidance
|
182 |
+
detach_main_path (bool): Detach gradient
|
183 |
+
|
184 |
+
Returns:
|
185 |
+
torch.Tensor: noise prediction
|
186 |
+
"""
|
187 |
+
timestep = self.scheduler.timesteps[timestep_index]
|
188 |
+
|
189 |
+
latent_model_input = self.scheduler.scale_model_input(
|
190 |
+
sample=torch.cat([latents] * 2) if do_classifier_free_guidance else latents,
|
191 |
+
timestep=timestep,
|
192 |
+
)
|
193 |
+
|
194 |
+
noise_pred = self._get_unet_prediction(
|
195 |
+
latent_model_input=latent_model_input,
|
196 |
+
timestep=timestep,
|
197 |
+
encoder_hidden_states=encoder_hidden_states,
|
198 |
+
)
|
199 |
+
|
200 |
+
if do_classifier_free_guidance:
|
201 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
202 |
+
if detach_main_path:
|
203 |
+
noise_pred_text = noise_pred_text.detach()
|
204 |
+
|
205 |
+
noise_pred = noise_pred_uncond + self.guidance_scale * (
|
206 |
+
noise_pred_text - noise_pred_uncond
|
207 |
+
)
|
208 |
+
return noise_pred
|
209 |
+
|
210 |
+
def sample_next_latents(
|
211 |
+
self,
|
212 |
+
latents: torch.Tensor,
|
213 |
+
timestep_index: int,
|
214 |
+
noise_pred: torch.Tensor,
|
215 |
+
return_pred_original: bool = False,
|
216 |
+
) -> torch.Tensor:
|
217 |
+
"""
|
218 |
+
Return next latents prediction
|
219 |
+
|
220 |
+
Args:
|
221 |
+
latents (torch.Tensor): Image latents
|
222 |
+
timestep_index (int): noise scheduler timestep index
|
223 |
+
noise_pred (torch.Tensor): noise prediction
|
224 |
+
return_pred_original (bool) Whether to sample original sample
|
225 |
+
|
226 |
+
Returns:
|
227 |
+
torch.Tensor: latent prediction
|
228 |
+
"""
|
229 |
+
timestep = self.scheduler.timesteps[timestep_index]
|
230 |
+
sample = self.scheduler.step(
|
231 |
+
model_output=noise_pred, timestep=timestep, sample=latents
|
232 |
+
)
|
233 |
+
return (
|
234 |
+
sample.pred_original_sample if return_pred_original else sample.prev_sample
|
235 |
+
)
|
236 |
+
|
237 |
+
def predict_next_latents(
|
238 |
+
self,
|
239 |
+
latents: torch.Tensor,
|
240 |
+
timestep_index: int,
|
241 |
+
encoder_hidden_states: torch.Tensor,
|
242 |
+
return_pred_original: bool = False,
|
243 |
+
do_classifier_free_guidance: bool = False,
|
244 |
+
detach_main_path: bool = False,
|
245 |
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
246 |
+
"""
|
247 |
+
Predicts the next latent states during the diffusion process.
|
248 |
+
|
249 |
+
Args:
|
250 |
+
latents (torch.Tensor): Current latent states.
|
251 |
+
timestep_index (int): Index of the current timestep.
|
252 |
+
encoder_hidden_states (torch.Tensor): Encoder hidden states from the text encoder.
|
253 |
+
return_pred_original (bool): Whether to return the predicted original sample.
|
254 |
+
do_classifier_free_guidance (bool) Whether to do classifier free guidance
|
255 |
+
detach_main_path (bool): Detach gradient
|
256 |
+
|
257 |
+
Returns:
|
258 |
+
tuple: Next latents and predicted noise tensor.
|
259 |
+
"""
|
260 |
+
|
261 |
+
noise_pred = self.get_noise_prediction(
|
262 |
+
latents=latents,
|
263 |
+
timestep_index=timestep_index,
|
264 |
+
encoder_hidden_states=encoder_hidden_states,
|
265 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
266 |
+
detach_main_path=detach_main_path,
|
267 |
+
)
|
268 |
+
|
269 |
+
latents = self.sample_next_latents(
|
270 |
+
latents=latents,
|
271 |
+
noise_pred=noise_pred,
|
272 |
+
timestep_index=timestep_index,
|
273 |
+
return_pred_original=return_pred_original,
|
274 |
+
)
|
275 |
+
|
276 |
+
return latents, noise_pred
|
277 |
+
|
278 |
+
def get_latents(self, batch_size: int, device: torch.device) -> torch.Tensor:
|
279 |
+
latent_resolution = int(self.resolution) // self.vae_scale_factor
|
280 |
+
return torch.randn(
|
281 |
+
(
|
282 |
+
batch_size,
|
283 |
+
self.original_unet.config.in_channels,
|
284 |
+
latent_resolution,
|
285 |
+
latent_resolution,
|
286 |
+
),
|
287 |
+
device=device,
|
288 |
+
)
|
289 |
+
|
290 |
+
def do_k_diffusion_steps(
|
291 |
+
self,
|
292 |
+
start_timestep_index: int,
|
293 |
+
end_timestep_index: int,
|
294 |
+
latents: torch.Tensor,
|
295 |
+
encoder_hidden_states: torch.Tensor,
|
296 |
+
return_pred_original: bool = False,
|
297 |
+
do_classifier_free_guidance: bool = False,
|
298 |
+
detach_main_path: bool = False,
|
299 |
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
300 |
+
"""
|
301 |
+
Performs multiple diffusion steps between specified timesteps.
|
302 |
+
|
303 |
+
Args:
|
304 |
+
start_timestep_index (int): Starting timestep index.
|
305 |
+
end_timestep_index (int): Ending timestep index.
|
306 |
+
latents (torch.Tensor): Initial latents.
|
307 |
+
encoder_hidden_states (torch.Tensor): Encoder hidden states.
|
308 |
+
return_pred_original (bool): Whether to return the predicted original sample.
|
309 |
+
do_classifier_free_guidance (bool) Whether to do classifier free guidance
|
310 |
+
detach_main_path (bool): Detach gradient
|
311 |
+
|
312 |
+
Returns:
|
313 |
+
tuple: Resulting latents and encoder hidden states.
|
314 |
+
"""
|
315 |
+
assert start_timestep_index <= end_timestep_index
|
316 |
+
|
317 |
+
for timestep_index in range(start_timestep_index, end_timestep_index - 1):
|
318 |
+
latents, _ = self.predict_next_latents(
|
319 |
+
latents=latents,
|
320 |
+
timestep_index=timestep_index,
|
321 |
+
encoder_hidden_states=encoder_hidden_states,
|
322 |
+
return_pred_original=False,
|
323 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
324 |
+
detach_main_path=detach_main_path,
|
325 |
+
)
|
326 |
+
res, _ = self.predict_next_latents(
|
327 |
+
latents=latents,
|
328 |
+
timestep_index=end_timestep_index - 1,
|
329 |
+
encoder_hidden_states=encoder_hidden_states,
|
330 |
+
return_pred_original=return_pred_original,
|
331 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
332 |
+
)
|
333 |
+
return res, encoder_hidden_states
|
334 |
+
|
335 |
+
def upcast_vae(self):
|
336 |
+
dtype = self.vae.dtype
|
337 |
+
self.vae.to(dtype=torch.float32)
|
338 |
+
use_torch_2_0_or_xformers = isinstance(
|
339 |
+
self.vae.decoder.mid_block.attentions[0].processor,
|
340 |
+
(
|
341 |
+
AttnProcessor2_0,
|
342 |
+
XFormersAttnProcessor,
|
343 |
+
FusedAttnProcessor2_0,
|
344 |
+
),
|
345 |
+
)
|
346 |
+
if use_torch_2_0_or_xformers:
|
347 |
+
self.vae.post_quant_conv.to(dtype)
|
348 |
+
self.vae.decoder.conv_in.to(dtype)
|
349 |
+
self.vae.decoder.mid_block.to(dtype)
|
350 |
+
|
351 |
+
@torch.no_grad()
|
352 |
+
def __call__(
|
353 |
+
self,
|
354 |
+
prompt: str | list[str],
|
355 |
+
num_inference_steps=40,
|
356 |
+
original_unet_steps=35,
|
357 |
+
resolution=1024,
|
358 |
+
guidance_scale=5,
|
359 |
+
output_type: str = "pil",
|
360 |
+
return_dict: bool = True,
|
361 |
+
generator=None,
|
362 |
+
):
|
363 |
+
self.guidance_scale = guidance_scale
|
364 |
+
self.resolution = resolution
|
365 |
+
batch_size = 1 if isinstance(prompt, str) else len(prompt)
|
366 |
+
|
367 |
+
tokenized_prompts_1 = self.tokenizer(
|
368 |
+
prompt,
|
369 |
+
max_length=self.tokenizer.model_max_length,
|
370 |
+
padding="max_length",
|
371 |
+
truncation=True,
|
372 |
+
return_tensors="pt",
|
373 |
+
).input_ids
|
374 |
+
|
375 |
+
tokenized_prompts_2 = self.tokenizer_2(
|
376 |
+
prompt,
|
377 |
+
max_length=self.tokenizer_2.model_max_length,
|
378 |
+
padding="max_length",
|
379 |
+
truncation=True,
|
380 |
+
return_tensors="pt",
|
381 |
+
).input_ids
|
382 |
+
|
383 |
+
original_encoder_hidden_states = self._get_encoder_hidden_states(
|
384 |
+
tokenized_prompts_1=tokenized_prompts_1,
|
385 |
+
tokenized_prompts_2=tokenized_prompts_2,
|
386 |
+
do_classifier_free_guidance=True
|
387 |
+
)
|
388 |
+
fine_tuned_encoder_hidden_states = self._get_encoder_hidden_states(
|
389 |
+
tokenized_prompts_1=tokenized_prompts_1,
|
390 |
+
tokenized_prompts_2=tokenized_prompts_2,
|
391 |
+
do_classifier_free_guidance=False
|
392 |
+
)
|
393 |
+
|
394 |
+
latent_resolution = int(resolution) // self.vae_scale_factor
|
395 |
+
latents = torch.randn(
|
396 |
+
(
|
397 |
+
batch_size,
|
398 |
+
self.original_unet.config.in_channels,
|
399 |
+
latent_resolution,
|
400 |
+
latent_resolution,
|
401 |
+
),
|
402 |
+
device=self.device,
|
403 |
+
)
|
404 |
+
|
405 |
+
self.scheduler.set_timesteps(
|
406 |
+
num_inference_steps,
|
407 |
+
device=self.device
|
408 |
+
)
|
409 |
+
|
410 |
+
self._use_original_unet = True
|
411 |
+
latents, _ = self.do_k_diffusion_steps(
|
412 |
+
start_timestep_index=0,
|
413 |
+
end_timestep_index=original_unet_steps,
|
414 |
+
latents=latents,
|
415 |
+
encoder_hidden_states=original_encoder_hidden_states,
|
416 |
+
return_pred_original=False,
|
417 |
+
do_classifier_free_guidance=True,
|
418 |
+
)
|
419 |
+
|
420 |
+
self._use_original_unet = False
|
421 |
+
latents, _ = self.do_k_diffusion_steps(
|
422 |
+
start_timestep_index=original_unet_steps,
|
423 |
+
end_timestep_index=num_inference_steps,
|
424 |
+
latents=latents,
|
425 |
+
encoder_hidden_states=fine_tuned_encoder_hidden_states,
|
426 |
+
return_pred_original=False,
|
427 |
+
do_classifier_free_guidance=False,
|
428 |
+
)
|
429 |
+
|
430 |
+
|
431 |
+
if not output_type == "latent":
|
432 |
+
# make sure the VAE is in float32 mode, as it overflows in float16
|
433 |
+
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
|
434 |
+
|
435 |
+
if needs_upcasting:
|
436 |
+
self.upcast_vae()
|
437 |
+
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
|
438 |
+
elif latents.dtype != self.vae.dtype:
|
439 |
+
if torch.backends.mps.is_available():
|
440 |
+
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
|
441 |
+
self.vae = self.vae.to(latents.dtype)
|
442 |
+
|
443 |
+
# unscale/denormalize the latents
|
444 |
+
# denormalize with the mean and std if available and not None
|
445 |
+
has_latents_mean = hasattr(self.vae.config, "latents_mean") and self.vae.config.latents_mean is not None
|
446 |
+
has_latents_std = hasattr(self.vae.config, "latents_std") and self.vae.config.latents_std is not None
|
447 |
+
if has_latents_mean and has_latents_std:
|
448 |
+
latents_mean = (
|
449 |
+
torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1).to(latents.device, latents.dtype)
|
450 |
+
)
|
451 |
+
latents_std = (
|
452 |
+
torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1).to(latents.device, latents.dtype)
|
453 |
+
)
|
454 |
+
latents = latents * latents_std / self.vae.config.scaling_factor + latents_mean
|
455 |
+
else:
|
456 |
+
latents = latents / self.vae.config.scaling_factor
|
457 |
+
|
458 |
+
image = self.vae.decode(latents, return_dict=False)[0]
|
459 |
+
|
460 |
+
# cast back to fp16 if needed
|
461 |
+
if needs_upcasting:
|
462 |
+
self.vae.to(dtype=torch.float16)
|
463 |
+
else:
|
464 |
+
image = latents
|
465 |
+
|
466 |
+
if not output_type == "latent":
|
467 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
468 |
+
|
469 |
+
# Offload all models
|
470 |
+
self.maybe_free_model_hooks()
|
471 |
+
|
472 |
+
if not return_dict:
|
473 |
+
return (image,)
|
474 |
+
|
475 |
+
return StableDiffusionXLPipelineOutput(images=image)
|