|
import torch |
|
from diffusers import DiffusionPipeline, DDPMScheduler, StableDiffusionPipeline |
|
from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput |
|
from diffusers.image_processor import VaeImageProcessor |
|
from huggingface_hub import PyTorchModelHubMixin |
|
from transformers import CLIPTextModel, CLIPTextModelWithProjection |
|
from diffusers.models.attention_processor import ( |
|
AttnProcessor2_0, |
|
FusedAttnProcessor2_0, |
|
XFormersAttnProcessor, |
|
) |
|
|
|
|
|
class CombinedStableDiffusionXL( |
|
DiffusionPipeline, |
|
PyTorchModelHubMixin |
|
): |
|
""" |
|
A Stable Diffusion model wrapper that provides functionality for text-to-image synthesis, |
|
noise scheduling, latent space manipulation, and image decoding. |
|
""" |
|
def __init__( |
|
self, |
|
original_unet: torch.nn.Module, |
|
fine_tuned_unet: torch.nn.Module, |
|
scheduler: DDPMScheduler, |
|
vae: torch.nn.Module, |
|
tokenizer: CLIPTextModel, |
|
tokenizer_2: CLIPTextModel, |
|
text_encoder: CLIPTextModelWithProjection, |
|
text_encoder_2: CLIPTextModelWithProjection, |
|
) -> None: |
|
|
|
super().__init__() |
|
|
|
self.register_modules( |
|
tokenizer=tokenizer, |
|
tokenizer_2=tokenizer_2, |
|
text_encoder=text_encoder, |
|
text_encoder_2=text_encoder_2, |
|
original_unet=original_unet, |
|
fine_tuned_unet=fine_tuned_unet, |
|
scheduler=scheduler, |
|
vae=vae, |
|
) |
|
|
|
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) |
|
self.image_processor = VaeImageProcessor( |
|
vae_scale_factor=self.vae_scale_factor |
|
) |
|
self.resolution = 1024 |
|
|
|
def _get_negative_prompts( |
|
self, batch_size: int |
|
) -> tuple[torch.Tensor, torch.Tensor]: |
|
inputs_ids_1 = self.tokenizer( |
|
[""] * batch_size, |
|
max_length=self.tokenizer.model_max_length, |
|
padding="max_length", |
|
truncation=True, |
|
return_tensors="pt", |
|
).input_ids |
|
|
|
input_ids_2 = self.tokenizer_2( |
|
[""] * batch_size, |
|
max_length=self.tokenizer.model_max_length, |
|
padding="max_length", |
|
truncation=True, |
|
return_tensors="pt", |
|
).input_ids |
|
return inputs_ids_1, input_ids_2 |
|
|
|
def _get_encoder_hidden_states( |
|
self, |
|
tokenized_prompts_1: torch.Tensor, |
|
tokenized_prompts_2: torch.Tensor, |
|
do_classifier_free_guidance: bool = False |
|
) -> torch.Tensor: |
|
text_input_ids_list = [ |
|
tokenized_prompts_1, |
|
tokenized_prompts_2 |
|
] |
|
batch_size = text_input_ids_list[0].size(0) |
|
|
|
if do_classifier_free_guidance: |
|
negative_prompts = [ |
|
embed.to(text_input_ids_list[0].device) |
|
for embed in self._get_negative_prompts(batch_size) |
|
] |
|
|
|
text_input_ids_list = [ |
|
torch.cat( |
|
[ |
|
negative_prompt, |
|
text_input, |
|
] |
|
) |
|
for text_input, negative_prompt in zip( |
|
text_input_ids_list, negative_prompts |
|
) |
|
] |
|
prompt_embeds_list = [] |
|
|
|
text_encoders = [self.text_encoder, self.text_encoder_2] |
|
for text_encoder, text_input_ids in zip(text_encoders, text_input_ids_list): |
|
prompt_embeds = text_encoder( |
|
text_input_ids.to(text_encoder.device), |
|
output_hidden_states=True, |
|
return_dict=False, |
|
) |
|
pooled_prompt_embeds = prompt_embeds[0] |
|
prompt_embeds = prompt_embeds[-1][-2] |
|
bs_embed, seq_len, _ = prompt_embeds.shape |
|
prompt_embeds = prompt_embeds.view(bs_embed, seq_len, -1) |
|
prompt_embeds_list.append(prompt_embeds) |
|
|
|
prompt_embeds = torch.cat(prompt_embeds_list, dim=-1) |
|
pooled_prompt_embeds = pooled_prompt_embeds.view(bs_embed, -1) |
|
return prompt_embeds, pooled_prompt_embeds |
|
|
|
def _get_unet_prediction( |
|
self, |
|
latent_model_input: torch.Tensor, |
|
timestep: int, |
|
encoder_hidden_states: torch.Tensor, |
|
) -> torch.Tensor: |
|
""" |
|
Return unet noise prediction |
|
|
|
Args: |
|
latent_model_input (torch.Tensor): Unet latents input |
|
timestep (int): noise scheduler timestep |
|
encoder_hidden_states (tuple[torch.Tensor, torch.Tensor]): Text encoder hidden states |
|
|
|
Returns: |
|
torch.Tensor: noise prediction |
|
""" |
|
unet = self.original_unet if self._use_original_unet else self.fine_tuned_unet |
|
|
|
prompt_embeds, pooled_prompt_embeds = encoder_hidden_states |
|
target_size = torch.tensor( |
|
[ |
|
[self.resolution, self.resolution] |
|
for _ in range(latent_model_input.size(0)) |
|
], |
|
device=latent_model_input.device, |
|
dtype=torch.float32, |
|
) |
|
add_time_ids = torch.cat( |
|
[target_size, torch.zeros_like(target_size), target_size], dim=1 |
|
) |
|
|
|
unet_added_conditions = { |
|
"time_ids": add_time_ids, |
|
"text_embeds": pooled_prompt_embeds, |
|
} |
|
|
|
return unet( |
|
latent_model_input, |
|
timestep, |
|
encoder_hidden_states=prompt_embeds, |
|
added_cond_kwargs=unet_added_conditions, |
|
).sample |
|
|
|
def get_noise_prediction( |
|
self, |
|
latents: torch.Tensor, |
|
timestep_index: int, |
|
encoder_hidden_states: torch.Tensor, |
|
do_classifier_free_guidance: bool = False, |
|
detach_main_path: bool = False, |
|
): |
|
""" |
|
Return noise prediction |
|
|
|
Args: |
|
latents (torch.Tensor): Image latents |
|
timestep_index (int): noise scheduler timestep index |
|
encoder_hidden_states (torch.Tensor): Text encoder hidden states |
|
do_classifier_free_guidance (bool) Whether to do classifier free guidance |
|
detach_main_path (bool): Detach gradient |
|
|
|
Returns: |
|
torch.Tensor: noise prediction |
|
""" |
|
timestep = self.scheduler.timesteps[timestep_index] |
|
|
|
latent_model_input = self.scheduler.scale_model_input( |
|
sample=torch.cat([latents] * 2) if do_classifier_free_guidance else latents, |
|
timestep=timestep, |
|
) |
|
|
|
noise_pred = self._get_unet_prediction( |
|
latent_model_input=latent_model_input, |
|
timestep=timestep, |
|
encoder_hidden_states=encoder_hidden_states, |
|
) |
|
|
|
if do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
if detach_main_path: |
|
noise_pred_text = noise_pred_text.detach() |
|
|
|
noise_pred = noise_pred_uncond + self.guidance_scale * ( |
|
noise_pred_text - noise_pred_uncond |
|
) |
|
return noise_pred |
|
|
|
def sample_next_latents( |
|
self, |
|
latents: torch.Tensor, |
|
timestep_index: int, |
|
noise_pred: torch.Tensor, |
|
return_pred_original: bool = False, |
|
) -> torch.Tensor: |
|
""" |
|
Return next latents prediction |
|
|
|
Args: |
|
latents (torch.Tensor): Image latents |
|
timestep_index (int): noise scheduler timestep index |
|
noise_pred (torch.Tensor): noise prediction |
|
return_pred_original (bool) Whether to sample original sample |
|
|
|
Returns: |
|
torch.Tensor: latent prediction |
|
""" |
|
timestep = self.scheduler.timesteps[timestep_index] |
|
sample = self.scheduler.step( |
|
model_output=noise_pred, timestep=timestep, sample=latents |
|
) |
|
return ( |
|
sample.pred_original_sample if return_pred_original else sample.prev_sample |
|
) |
|
|
|
def predict_next_latents( |
|
self, |
|
latents: torch.Tensor, |
|
timestep_index: int, |
|
encoder_hidden_states: torch.Tensor, |
|
return_pred_original: bool = False, |
|
do_classifier_free_guidance: bool = False, |
|
detach_main_path: bool = False, |
|
) -> tuple[torch.Tensor, torch.Tensor]: |
|
""" |
|
Predicts the next latent states during the diffusion process. |
|
|
|
Args: |
|
latents (torch.Tensor): Current latent states. |
|
timestep_index (int): Index of the current timestep. |
|
encoder_hidden_states (torch.Tensor): Encoder hidden states from the text encoder. |
|
return_pred_original (bool): Whether to return the predicted original sample. |
|
do_classifier_free_guidance (bool) Whether to do classifier free guidance |
|
detach_main_path (bool): Detach gradient |
|
|
|
Returns: |
|
tuple: Next latents and predicted noise tensor. |
|
""" |
|
|
|
noise_pred = self.get_noise_prediction( |
|
latents=latents, |
|
timestep_index=timestep_index, |
|
encoder_hidden_states=encoder_hidden_states, |
|
do_classifier_free_guidance=do_classifier_free_guidance, |
|
detach_main_path=detach_main_path, |
|
) |
|
|
|
latents = self.sample_next_latents( |
|
latents=latents, |
|
noise_pred=noise_pred, |
|
timestep_index=timestep_index, |
|
return_pred_original=return_pred_original, |
|
) |
|
|
|
return latents, noise_pred |
|
|
|
def get_latents(self, batch_size: int, device: torch.device) -> torch.Tensor: |
|
latent_resolution = int(self.resolution) // self.vae_scale_factor |
|
return torch.randn( |
|
( |
|
batch_size, |
|
self.original_unet.config.in_channels, |
|
latent_resolution, |
|
latent_resolution, |
|
), |
|
device=device, |
|
) |
|
|
|
def do_k_diffusion_steps( |
|
self, |
|
start_timestep_index: int, |
|
end_timestep_index: int, |
|
latents: torch.Tensor, |
|
encoder_hidden_states: torch.Tensor, |
|
return_pred_original: bool = False, |
|
do_classifier_free_guidance: bool = False, |
|
detach_main_path: bool = False, |
|
) -> tuple[torch.Tensor, torch.Tensor]: |
|
""" |
|
Performs multiple diffusion steps between specified timesteps. |
|
|
|
Args: |
|
start_timestep_index (int): Starting timestep index. |
|
end_timestep_index (int): Ending timestep index. |
|
latents (torch.Tensor): Initial latents. |
|
encoder_hidden_states (torch.Tensor): Encoder hidden states. |
|
return_pred_original (bool): Whether to return the predicted original sample. |
|
do_classifier_free_guidance (bool) Whether to do classifier free guidance |
|
detach_main_path (bool): Detach gradient |
|
|
|
Returns: |
|
tuple: Resulting latents and encoder hidden states. |
|
""" |
|
assert start_timestep_index <= end_timestep_index |
|
|
|
for timestep_index in range(start_timestep_index, end_timestep_index - 1): |
|
latents, _ = self.predict_next_latents( |
|
latents=latents, |
|
timestep_index=timestep_index, |
|
encoder_hidden_states=encoder_hidden_states, |
|
return_pred_original=False, |
|
do_classifier_free_guidance=do_classifier_free_guidance, |
|
detach_main_path=detach_main_path, |
|
) |
|
res, _ = self.predict_next_latents( |
|
latents=latents, |
|
timestep_index=end_timestep_index - 1, |
|
encoder_hidden_states=encoder_hidden_states, |
|
return_pred_original=return_pred_original, |
|
do_classifier_free_guidance=do_classifier_free_guidance, |
|
) |
|
return res, encoder_hidden_states |
|
|
|
def upcast_vae(self): |
|
dtype = self.vae.dtype |
|
self.vae.to(dtype=torch.float32) |
|
use_torch_2_0_or_xformers = isinstance( |
|
self.vae.decoder.mid_block.attentions[0].processor, |
|
( |
|
AttnProcessor2_0, |
|
XFormersAttnProcessor, |
|
FusedAttnProcessor2_0, |
|
), |
|
) |
|
if use_torch_2_0_or_xformers: |
|
self.vae.post_quant_conv.to(dtype) |
|
self.vae.decoder.conv_in.to(dtype) |
|
self.vae.decoder.mid_block.to(dtype) |
|
|
|
@torch.no_grad() |
|
def __call__( |
|
self, |
|
prompt: str | list[str], |
|
num_inference_steps=40, |
|
original_unet_steps=35, |
|
resolution=1024, |
|
guidance_scale=5, |
|
output_type: str = "pil", |
|
return_dict: bool = True, |
|
): |
|
self.guidance_scale = guidance_scale |
|
self.resolution = resolution |
|
batch_size = 1 if isinstance(prompt, str) else len(prompt) |
|
|
|
tokenized_prompts_1 = self.tokenizer( |
|
prompt, |
|
max_length=self.tokenizer.model_max_length, |
|
padding="max_length", |
|
truncation=True, |
|
return_tensors="pt", |
|
).input_ids |
|
|
|
tokenized_prompts_2 = self.tokenizer_2( |
|
prompt, |
|
max_length=self.tokenizer_2.model_max_length, |
|
padding="max_length", |
|
truncation=True, |
|
return_tensors="pt", |
|
).input_ids |
|
|
|
original_encoder_hidden_states = self._get_encoder_hidden_states( |
|
tokenized_prompts_1=tokenized_prompts_1, |
|
tokenized_prompts_2=tokenized_prompts_2, |
|
do_classifier_free_guidance=True |
|
) |
|
fine_tuned_encoder_hidden_states = self._get_encoder_hidden_states( |
|
tokenized_prompts_1=tokenized_prompts_1, |
|
tokenized_prompts_2=tokenized_prompts_2, |
|
do_classifier_free_guidance=False |
|
) |
|
|
|
latent_resolution = int(resolution) // self.vae_scale_factor |
|
latents = torch.randn( |
|
( |
|
batch_size, |
|
self.original_unet.config.in_channels, |
|
latent_resolution, |
|
latent_resolution, |
|
), |
|
device=self.device, |
|
) |
|
|
|
self.scheduler.set_timesteps( |
|
num_inference_steps, |
|
device=self.device |
|
) |
|
|
|
self._use_original_unet = True |
|
latents, _ = self.do_k_diffusion_steps( |
|
start_timestep_index=0, |
|
end_timestep_index=original_unet_steps, |
|
latents=latents, |
|
encoder_hidden_states=original_encoder_hidden_states, |
|
return_pred_original=False, |
|
do_classifier_free_guidance=True, |
|
) |
|
|
|
self._use_original_unet = False |
|
latents, _ = self.do_k_diffusion_steps( |
|
start_timestep_index=original_unet_steps, |
|
end_timestep_index=num_inference_steps, |
|
latents=latents, |
|
encoder_hidden_states=fine_tuned_encoder_hidden_states, |
|
return_pred_original=False, |
|
do_classifier_free_guidance=False, |
|
) |
|
|
|
|
|
if not output_type == "latent": |
|
|
|
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast |
|
|
|
if needs_upcasting: |
|
self.upcast_vae() |
|
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) |
|
elif latents.dtype != self.vae.dtype: |
|
if torch.backends.mps.is_available(): |
|
|
|
self.vae = self.vae.to(latents.dtype) |
|
|
|
latents = latents / self.vae.config.scaling_factor |
|
|
|
image = self.vae.decode(latents).sample |
|
|
|
|
|
if needs_upcasting: |
|
self.vae.to(dtype=torch.float16) |
|
else: |
|
image = latents |
|
|
|
if not output_type == "latent": |
|
image = self.image_processor.postprocess( |
|
image, |
|
output_type=output_type, |
|
do_denormalize=[True] * image.shape[0] |
|
) |
|
|
|
|
|
self.maybe_free_model_hooks() |
|
|
|
if not return_dict: |
|
return (image,) |
|
|
|
return StableDiffusionXLPipelineOutput(images=image) |
|
|