Upload combined_stable_diffusion.py with huggingface_hub
Browse files- combined_stable_diffusion.py +397 -0
combined_stable_diffusion.py
ADDED
@@ -0,0 +1,397 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import random
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from diffusers import DiffusionPipeline, DDPMScheduler
|
6 |
+
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker, StableDiffusionPipelineOutput
|
7 |
+
from diffusers.pipelines.stable_diffusion.pipeline_output import StableDiffusionPipelineOutput
|
8 |
+
from diffusers.image_processor import VaeImageProcessor
|
9 |
+
from huggingface_hub import PyTorchModelHubMixin
|
10 |
+
from PIL import Image
|
11 |
+
from transformers import CLIPTextModel, CLIPTokenizer, CLIPImageProcessor
|
12 |
+
|
13 |
+
|
14 |
+
|
15 |
+
class CombinedStableDiffusion(
|
16 |
+
DiffusionPipeline,
|
17 |
+
PyTorchModelHubMixin
|
18 |
+
):
|
19 |
+
"""
|
20 |
+
A Stable Diffusion model wrapper that provides functionality for text-to-image synthesis,
|
21 |
+
noise scheduling, latent space manipulation, and image decoding.
|
22 |
+
"""
|
23 |
+
def __init__(
|
24 |
+
self,
|
25 |
+
original_unet: torch.nn.Module,
|
26 |
+
fine_tuned_unet: torch.nn.Module,
|
27 |
+
scheduler: DDPMScheduler,
|
28 |
+
vae: torch.nn.Module,
|
29 |
+
tokenizer: CLIPTextModel,
|
30 |
+
safety_checker: StableDiffusionSafetyChecker,
|
31 |
+
feature_extractor: CLIPImageProcessor,
|
32 |
+
text_encoder: CLIPTokenizer,
|
33 |
+
) -> None:
|
34 |
+
|
35 |
+
super().__init__()
|
36 |
+
|
37 |
+
self.register_modules(
|
38 |
+
tokenizer=tokenizer,
|
39 |
+
text_encoder=text_encoder,
|
40 |
+
original_unet=original_unet,
|
41 |
+
fine_tuned_unet=fine_tuned_unet,
|
42 |
+
scheduler=scheduler,
|
43 |
+
vae=vae,
|
44 |
+
safety_checker=safety_checker,
|
45 |
+
feature_extractor=feature_extractor,
|
46 |
+
)
|
47 |
+
|
48 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
49 |
+
self.image_processor = VaeImageProcessor(
|
50 |
+
vae_scale_factor=self.vae_scale_factor
|
51 |
+
)
|
52 |
+
|
53 |
+
def _get_negative_prompts(self, batch_size: int) -> torch.Tensor:
|
54 |
+
return self.tokenizer(
|
55 |
+
[""] * batch_size,
|
56 |
+
max_length=self.tokenizer.model_max_length,
|
57 |
+
padding="max_length",
|
58 |
+
truncation=True,
|
59 |
+
return_tensors="pt",
|
60 |
+
).input_ids
|
61 |
+
|
62 |
+
def _get_encoder_hidden_states(
|
63 |
+
self, tokenized_prompts: torch.Tensor, do_classifier_free_guidance: bool = False
|
64 |
+
) -> torch.Tensor:
|
65 |
+
if do_classifier_free_guidance:
|
66 |
+
tokenized_prompts = torch.cat(
|
67 |
+
[
|
68 |
+
self._get_negative_prompts(tokenized_prompts.shape[0]).to(
|
69 |
+
tokenized_prompts.device
|
70 |
+
),
|
71 |
+
tokenized_prompts,
|
72 |
+
]
|
73 |
+
)
|
74 |
+
|
75 |
+
return self.text_encoder(tokenized_prompts)[0]
|
76 |
+
|
77 |
+
def _get_unet_prediction(
|
78 |
+
self,
|
79 |
+
latent_model_input: torch.Tensor,
|
80 |
+
timestep: int,
|
81 |
+
encoder_hidden_states: torch.Tensor,
|
82 |
+
) -> torch.Tensor:
|
83 |
+
"""
|
84 |
+
Return unet noise prediction
|
85 |
+
|
86 |
+
Args:
|
87 |
+
latent_model_input (torch.Tensor): Unet latents input
|
88 |
+
timestep (int): noise scheduler timestep
|
89 |
+
encoder_hidden_states (torch.Tensor): Text encoder hidden states
|
90 |
+
|
91 |
+
Returns:
|
92 |
+
torch.Tensor: noise prediction
|
93 |
+
"""
|
94 |
+
unet = self.original_unet if self._use_original_unet else self.fine_tuned_unet
|
95 |
+
|
96 |
+
return unet(
|
97 |
+
latent_model_input,
|
98 |
+
timestep=timestep,
|
99 |
+
encoder_hidden_states=encoder_hidden_states,
|
100 |
+
).sample
|
101 |
+
|
102 |
+
def get_noise_prediction(
|
103 |
+
self,
|
104 |
+
latents: torch.Tensor,
|
105 |
+
timestep_index: int,
|
106 |
+
encoder_hidden_states: torch.Tensor,
|
107 |
+
do_classifier_free_guidance: bool = False,
|
108 |
+
detach_main_path: bool = False,
|
109 |
+
):
|
110 |
+
"""
|
111 |
+
Return noise prediction
|
112 |
+
|
113 |
+
Args:
|
114 |
+
latents (torch.Tensor): Image latents
|
115 |
+
timestep_index (int): noise scheduler timestep index
|
116 |
+
encoder_hidden_states (torch.Tensor): Text encoder hidden states
|
117 |
+
do_classifier_free_guidance (bool) Whether to do classifier free guidance
|
118 |
+
detach_main_path (bool): Detach gradient
|
119 |
+
|
120 |
+
Returns:
|
121 |
+
torch.Tensor: noise prediction
|
122 |
+
"""
|
123 |
+
timestep = self.scheduler.timesteps[timestep_index]
|
124 |
+
|
125 |
+
latent_model_input = self.scheduler.scale_model_input(
|
126 |
+
sample=torch.cat([latents] * 2) if do_classifier_free_guidance else latents,
|
127 |
+
timestep=timestep,
|
128 |
+
)
|
129 |
+
|
130 |
+
noise_pred = self._get_unet_prediction(
|
131 |
+
latent_model_input=latent_model_input,
|
132 |
+
timestep=timestep,
|
133 |
+
encoder_hidden_states=encoder_hidden_states,
|
134 |
+
)
|
135 |
+
|
136 |
+
if do_classifier_free_guidance:
|
137 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
138 |
+
if detach_main_path:
|
139 |
+
noise_pred_text = noise_pred_text.detach()
|
140 |
+
|
141 |
+
noise_pred = noise_pred_uncond + self.guidance_scale * (
|
142 |
+
noise_pred_text - noise_pred_uncond
|
143 |
+
)
|
144 |
+
return noise_pred
|
145 |
+
|
146 |
+
def sample_next_latents(
|
147 |
+
self,
|
148 |
+
latents: torch.Tensor,
|
149 |
+
timestep_index: int,
|
150 |
+
noise_pred: torch.Tensor,
|
151 |
+
return_pred_original: bool = False,
|
152 |
+
) -> torch.Tensor:
|
153 |
+
"""
|
154 |
+
Return next latents prediction
|
155 |
+
|
156 |
+
Args:
|
157 |
+
latents (torch.Tensor): Image latents
|
158 |
+
timestep_index (int): noise scheduler timestep index
|
159 |
+
noise_pred (torch.Tensor): noise prediction
|
160 |
+
return_pred_original (bool) Whether to sample original sample
|
161 |
+
|
162 |
+
Returns:
|
163 |
+
torch.Tensor: latent prediction
|
164 |
+
"""
|
165 |
+
timestep = self.scheduler.timesteps[timestep_index]
|
166 |
+
sample = self.scheduler.step(
|
167 |
+
model_output=noise_pred, timestep=timestep, sample=latents
|
168 |
+
)
|
169 |
+
return (
|
170 |
+
sample.pred_original_sample if return_pred_original else sample.prev_sample
|
171 |
+
)
|
172 |
+
|
173 |
+
def predict_next_latents(
|
174 |
+
self,
|
175 |
+
latents: torch.Tensor,
|
176 |
+
timestep_index: int,
|
177 |
+
encoder_hidden_states: torch.Tensor,
|
178 |
+
return_pred_original: bool = False,
|
179 |
+
do_classifier_free_guidance: bool = False,
|
180 |
+
detach_main_path: bool = False,
|
181 |
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
182 |
+
"""
|
183 |
+
Predicts the next latent states during the diffusion process.
|
184 |
+
|
185 |
+
Args:
|
186 |
+
latents (torch.Tensor): Current latent states.
|
187 |
+
timestep_index (int): Index of the current timestep.
|
188 |
+
encoder_hidden_states (torch.Tensor): Encoder hidden states from the text encoder.
|
189 |
+
return_pred_original (bool): Whether to return the predicted original sample.
|
190 |
+
do_classifier_free_guidance (bool) Whether to do classifier free guidance
|
191 |
+
detach_main_path (bool): Detach gradient
|
192 |
+
|
193 |
+
Returns:
|
194 |
+
tuple: Next latents and predicted noise tensor.
|
195 |
+
"""
|
196 |
+
|
197 |
+
noise_pred = self.get_noise_prediction(
|
198 |
+
latents=latents,
|
199 |
+
timestep_index=timestep_index,
|
200 |
+
encoder_hidden_states=encoder_hidden_states,
|
201 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
202 |
+
detach_main_path=detach_main_path,
|
203 |
+
)
|
204 |
+
|
205 |
+
latents = self.sample_next_latents(
|
206 |
+
latents=latents,
|
207 |
+
noise_pred=noise_pred,
|
208 |
+
timestep_index=timestep_index,
|
209 |
+
return_pred_original=return_pred_original,
|
210 |
+
)
|
211 |
+
|
212 |
+
return latents, noise_pred
|
213 |
+
|
214 |
+
def get_latents(self, batch_size: int, device: torch.device) -> torch.Tensor:
|
215 |
+
latent_resolution = int(self.resolution) // self.vae_scale_factor
|
216 |
+
return torch.randn(
|
217 |
+
(
|
218 |
+
batch_size,
|
219 |
+
self.original_unet.config.in_channels,
|
220 |
+
latent_resolution,
|
221 |
+
latent_resolution,
|
222 |
+
),
|
223 |
+
device=device,
|
224 |
+
)
|
225 |
+
|
226 |
+
def do_k_diffusion_steps(
|
227 |
+
self,
|
228 |
+
start_timestep_index: int,
|
229 |
+
end_timestep_index: int,
|
230 |
+
latents: torch.Tensor,
|
231 |
+
encoder_hidden_states: torch.Tensor,
|
232 |
+
return_pred_original: bool = False,
|
233 |
+
do_classifier_free_guidance: bool = False,
|
234 |
+
detach_main_path: bool = False,
|
235 |
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
236 |
+
"""
|
237 |
+
Performs multiple diffusion steps between specified timesteps.
|
238 |
+
|
239 |
+
Args:
|
240 |
+
start_timestep_index (int): Starting timestep index.
|
241 |
+
end_timestep_index (int): Ending timestep index.
|
242 |
+
latents (torch.Tensor): Initial latents.
|
243 |
+
encoder_hidden_states (torch.Tensor): Encoder hidden states.
|
244 |
+
return_pred_original (bool): Whether to return the predicted original sample.
|
245 |
+
do_classifier_free_guidance (bool) Whether to do classifier free guidance
|
246 |
+
detach_main_path (bool): Detach gradient
|
247 |
+
|
248 |
+
Returns:
|
249 |
+
tuple: Resulting latents and encoder hidden states.
|
250 |
+
"""
|
251 |
+
assert start_timestep_index <= end_timestep_index
|
252 |
+
|
253 |
+
for timestep_index in range(start_timestep_index, end_timestep_index - 1):
|
254 |
+
latents, _ = self.predict_next_latents(
|
255 |
+
latents=latents,
|
256 |
+
timestep_index=timestep_index,
|
257 |
+
encoder_hidden_states=encoder_hidden_states,
|
258 |
+
return_pred_original=False,
|
259 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
260 |
+
detach_main_path=detach_main_path,
|
261 |
+
)
|
262 |
+
res, _ = self.predict_next_latents(
|
263 |
+
latents=latents,
|
264 |
+
timestep_index=end_timestep_index - 1,
|
265 |
+
encoder_hidden_states=encoder_hidden_states,
|
266 |
+
return_pred_original=return_pred_original,
|
267 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
268 |
+
)
|
269 |
+
return res, encoder_hidden_states
|
270 |
+
|
271 |
+
def get_pil_image(self, raw_images: torch.Tensor) -> list[Image]:
|
272 |
+
do_denormalize = [True] * raw_images.shape[0]
|
273 |
+
images = self.inference_image_processor.postprocess(
|
274 |
+
raw_images, output_type="pil", do_denormalize=do_denormalize
|
275 |
+
)
|
276 |
+
return images
|
277 |
+
|
278 |
+
def get_reward_image(self, raw_images: torch.Tensor) -> torch.Tensor:
|
279 |
+
reward_images = (raw_images / 2 + 0.5).clamp(0, 1)
|
280 |
+
|
281 |
+
if self.use_image_shifting:
|
282 |
+
self._shift_tensor_batch(
|
283 |
+
reward_images,
|
284 |
+
dx=random.randint(0, math.ceil(self.resolution / 224)),
|
285 |
+
dy=random.randint(0, math.ceil(self.resolution / 224)),
|
286 |
+
)
|
287 |
+
|
288 |
+
return self.reward_image_processor(reward_images)
|
289 |
+
|
290 |
+
def run_safety_checker(self, image, device, dtype):
|
291 |
+
if self.safety_checker is None:
|
292 |
+
has_nsfw_concept = None
|
293 |
+
else:
|
294 |
+
if torch.is_tensor(image):
|
295 |
+
feature_extractor_input = self.image_processor.postprocess(image, output_type="pil")
|
296 |
+
else:
|
297 |
+
feature_extractor_input = self.image_processor.numpy_to_pil(image)
|
298 |
+
safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device)
|
299 |
+
image, has_nsfw_concept = self.safety_checker(
|
300 |
+
images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
|
301 |
+
)
|
302 |
+
return image, has_nsfw_concept
|
303 |
+
|
304 |
+
@torch.no_grad()
|
305 |
+
def __call__(
|
306 |
+
self,
|
307 |
+
prompt: str | list[str],
|
308 |
+
num_inference_steps=40,
|
309 |
+
original_unet_steps=30,
|
310 |
+
resolution=512,
|
311 |
+
guidance_scale=7.5,
|
312 |
+
output_type: str = "pil",
|
313 |
+
return_dict: bool = True,
|
314 |
+
generator=None,
|
315 |
+
):
|
316 |
+
self.guidance_scale = guidance_scale
|
317 |
+
batch_size = 1 if isinstance(prompt, str) else len(prompt)
|
318 |
+
|
319 |
+
tokenized_prompts = self.tokenizer(
|
320 |
+
prompt,
|
321 |
+
return_tensors="pt",
|
322 |
+
padding="max_length",
|
323 |
+
max_length=self.tokenizer.model_max_length,
|
324 |
+
truncation=True
|
325 |
+
).input_ids.to(self.device)
|
326 |
+
original_encoder_hidden_states = self._get_encoder_hidden_states(
|
327 |
+
tokenized_prompts=tokenized_prompts,
|
328 |
+
do_classifier_free_guidance=True
|
329 |
+
)
|
330 |
+
fine_tuned_encoder_hidden_states = self._get_encoder_hidden_states(
|
331 |
+
tokenized_prompts=tokenized_prompts,
|
332 |
+
do_classifier_free_guidance=False
|
333 |
+
)
|
334 |
+
|
335 |
+
latent_resolution = int(resolution) // self.vae_scale_factor
|
336 |
+
latents = torch.randn(
|
337 |
+
(
|
338 |
+
batch_size,
|
339 |
+
self.original_unet.config.in_channels,
|
340 |
+
latent_resolution,
|
341 |
+
latent_resolution,
|
342 |
+
),
|
343 |
+
device=self.device,
|
344 |
+
)
|
345 |
+
|
346 |
+
self.scheduler.set_timesteps(
|
347 |
+
num_inference_steps,
|
348 |
+
device=self.device
|
349 |
+
)
|
350 |
+
|
351 |
+
self._use_original_unet = True
|
352 |
+
latents, _ = self.do_k_diffusion_steps(
|
353 |
+
start_timestep_index=0,
|
354 |
+
end_timestep_index=original_unet_steps,
|
355 |
+
latents=latents,
|
356 |
+
encoder_hidden_states=original_encoder_hidden_states,
|
357 |
+
return_pred_original=False,
|
358 |
+
do_classifier_free_guidance=True,
|
359 |
+
)
|
360 |
+
|
361 |
+
self._use_original_unet = False
|
362 |
+
latents, _ = self.do_k_diffusion_steps(
|
363 |
+
start_timestep_index=original_unet_steps,
|
364 |
+
end_timestep_index=num_inference_steps,
|
365 |
+
latents=latents,
|
366 |
+
encoder_hidden_states=fine_tuned_encoder_hidden_states,
|
367 |
+
return_pred_original=False,
|
368 |
+
do_classifier_free_guidance=False,
|
369 |
+
)
|
370 |
+
|
371 |
+
if not output_type == "latent":
|
372 |
+
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False, generator=generator)[
|
373 |
+
0
|
374 |
+
]
|
375 |
+
image, has_nsfw_concept = self.run_safety_checker(
|
376 |
+
image, self.device, original_encoder_hidden_states.dtype)
|
377 |
+
else:
|
378 |
+
image = latents
|
379 |
+
has_nsfw_concept = None
|
380 |
+
|
381 |
+
if has_nsfw_concept is None:
|
382 |
+
do_denormalize = [True] * image.shape[0]
|
383 |
+
else:
|
384 |
+
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
|
385 |
+
image = self.image_processor.postprocess(
|
386 |
+
image,
|
387 |
+
output_type=output_type,
|
388 |
+
do_denormalize=do_denormalize
|
389 |
+
)
|
390 |
+
|
391 |
+
# Offload all models
|
392 |
+
self.maybe_free_model_hooks()
|
393 |
+
|
394 |
+
if not return_dict:
|
395 |
+
return image, has_nsfw_concept
|
396 |
+
|
397 |
+
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|