Safetensors
internvl_chat
custom_code
lkdhy commited on
Commit
711e4df
Β·
verified Β·
1 Parent(s): 4d5b68b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +8 -0
README.md CHANGED
@@ -6,12 +6,20 @@ base_model:
6
  - OpenGVLab/InternVL3-8B
7
  ---
8
 
 
 
 
 
 
 
9
  # Code2Logic: Game-Code-Driven Data Synthesis for Enhancing VLMs General Reasoning
10
 
11
  This is the first work, to the best of our knowledge, that leverages ***game code*** to synthesize multimodal reasoning data for ***training*** VLMs. Furthermore, when trained solely with a GRPO strategy on **GameQA** (synthesized via our proposed **Code2Logic** approach), multiple cutting-edge open-source models exhibit significantly enhanced out-of-domain generalization.
12
 
13
  [[πŸ“– Paper](https://arxiv.org/abs/2505.13886)] [πŸ€— [GameQA-140K Dataset](https://huggingface.co/datasets/Gabriel166/GameQA-140K)] [πŸ€— [GameQA-InternVL3-8B](https://huggingface.co/Code2Logic/GameQA-InternVL3-8B) ] [πŸ€— [GameQA-Qwen2.5-VL-7B](https://huggingface.co/Code2Logic/GameQA-Qwen2.5-VL-7B)] [πŸ€— [GameQA-LLaVA-OV-7B](https://huggingface.co/Code2Logic/GameQA-llava-onevision-qwen2-7b-ov-hf) ]
14
 
 
 
15
  ## News
16
 
17
  * We've open-sourced the ***three*** models trained with GRPO on GameQA on [Huggingface](https://huggingface.co/Code2Logic).
 
6
  - OpenGVLab/InternVL3-8B
7
  ---
8
 
9
+ ***This model (GameQA-InternVL3-8B) results from trainning InternVL3-8B with GRPO purely on our [GameQA](https://huggingface.co/datasets/Gabriel166/GameQA-140K) dataset.***
10
+
11
+ # Evaluation Results on General Vision BenchMarks
12
+
13
+ <div align=center><img src="https://raw.githubusercontent.com/tongjingqi/Code2Logic/refs/heads/main/assets/evaluation_results_on_general_vision_benchmarks.png" width="90%"></div>
14
+
15
  # Code2Logic: Game-Code-Driven Data Synthesis for Enhancing VLMs General Reasoning
16
 
17
  This is the first work, to the best of our knowledge, that leverages ***game code*** to synthesize multimodal reasoning data for ***training*** VLMs. Furthermore, when trained solely with a GRPO strategy on **GameQA** (synthesized via our proposed **Code2Logic** approach), multiple cutting-edge open-source models exhibit significantly enhanced out-of-domain generalization.
18
 
19
  [[πŸ“– Paper](https://arxiv.org/abs/2505.13886)] [πŸ€— [GameQA-140K Dataset](https://huggingface.co/datasets/Gabriel166/GameQA-140K)] [πŸ€— [GameQA-InternVL3-8B](https://huggingface.co/Code2Logic/GameQA-InternVL3-8B) ] [πŸ€— [GameQA-Qwen2.5-VL-7B](https://huggingface.co/Code2Logic/GameQA-Qwen2.5-VL-7B)] [πŸ€— [GameQA-LLaVA-OV-7B](https://huggingface.co/Code2Logic/GameQA-llava-onevision-qwen2-7b-ov-hf) ]
20
 
21
+ <div align=center><img src="https://raw.githubusercontent.com/tongjingqi/Code2Logic/refs/heads/main/assets/categorized_30_games_images.png" width="90%"></div>
22
+
23
  ## News
24
 
25
  * We've open-sourced the ***three*** models trained with GRPO on GameQA on [Huggingface](https://huggingface.co/Code2Logic).