from typing import Dict, List, Any import torch from transformers import AutoTokenizer, AutoModelForCausalLM import os class EndpointHandler(): def __init__(self, path=""): # Look for checkpoint-100 folder checkpoint_path = None if not path or path == "/repository": base_path = "." else: base_path = path # Check different possible locations possible_paths = [ os.path.join(base_path, "checkpoint-36571"), os.path.join(".", "checkpoint-36571"), os.path.join("/repository", "checkpoint-36571"), "checkpoint-36571" ] for check_path in possible_paths: if os.path.exists(check_path) and os.path.isdir(check_path): # Verify it contains model files files = os.listdir(check_path) if any(f in files for f in ['config.json', 'pytorch_model.bin', 'model.safetensors']): checkpoint_path = check_path break if checkpoint_path is None: print(f"Available files in base path: {os.listdir(base_path) if os.path.exists(base_path) else 'Path does not exist'}") raise ValueError("Could not find checkpoint-100 folder with model files") print(f"Loading model from: {checkpoint_path}") print(f"Files in checkpoint: {os.listdir(checkpoint_path)}") # Load model and tokenizer from checkpoint-100 self.tokenizer = AutoTokenizer.from_pretrained(checkpoint_path, trust_remote_code=True) self.model = AutoModelForCausalLM.from_pretrained( checkpoint_path, device_map="auto", torch_dtype=torch.bfloat16, trust_remote_code=True, ) # Set pad token if not exists if self.tokenizer.pad_token is None: self.tokenizer.pad_token = self.tokenizer.eos_token def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: """ data args: inputs (:str): a string to be generated from parameters (:dict): generation parameters Return: A :obj:`list` | `dict`: will be serialized and returned """ # Get the input text inputs = data.pop("inputs", data) parameters = data.pop("parameters", {}) # Handle string input directly if isinstance(inputs, str): input_text = inputs else: input_text = str(inputs) # Set default parameters max_new_tokens = parameters.get("max_new_tokens", 1000) temperature = parameters.get("temperature", 0.1) do_sample = parameters.get("do_sample", True) top_p = parameters.get("top_p", 0.9) return_full_text = parameters.get("return_full_text", False) # Tokenize the input input_ids = self.tokenizer( input_text, return_tensors="pt", padding=True, truncation=True, max_length=2048 ).to(self.model.device) # Generate text with torch.no_grad(): generated_ids = self.model.generate( **input_ids, max_new_tokens=max_new_tokens, temperature=temperature, do_sample=do_sample, top_p=top_p, pad_token_id=self.tokenizer.pad_token_id, eos_token_id=self.tokenizer.eos_token_id, ) # Decode the generated text if return_full_text: generated_text = self.tokenizer.decode(generated_ids[0], skip_special_tokens=True) else: # Only return the newly generated part new_tokens = generated_ids[0][input_ids["input_ids"].shape[1]:] generated_text = self.tokenizer.decode(new_tokens, skip_special_tokens=True) return [{"generated_text": generated_text}]