|
from typing import Dict, List, Any |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
import os |
|
|
|
class EndpointHandler(): |
|
def __init__(self, path=""): |
|
|
|
checkpoint_path = None |
|
|
|
if not path or path == "/repository": |
|
base_path = "." |
|
else: |
|
base_path = path |
|
|
|
|
|
possible_paths = [ |
|
os.path.join(base_path, "checkpoint-36571"), |
|
os.path.join(".", "checkpoint-36571"), |
|
os.path.join("/repository", "checkpoint-36571"), |
|
"checkpoint-36571" |
|
] |
|
|
|
for check_path in possible_paths: |
|
if os.path.exists(check_path) and os.path.isdir(check_path): |
|
|
|
files = os.listdir(check_path) |
|
if any(f in files for f in ['config.json', 'pytorch_model.bin', 'model.safetensors']): |
|
checkpoint_path = check_path |
|
break |
|
|
|
if checkpoint_path is None: |
|
print(f"Available files in base path: {os.listdir(base_path) if os.path.exists(base_path) else 'Path does not exist'}") |
|
raise ValueError("Could not find checkpoint-100 folder with model files") |
|
|
|
print(f"Loading model from: {checkpoint_path}") |
|
print(f"Files in checkpoint: {os.listdir(checkpoint_path)}") |
|
|
|
|
|
self.tokenizer = AutoTokenizer.from_pretrained(checkpoint_path, trust_remote_code=True) |
|
self.model = AutoModelForCausalLM.from_pretrained( |
|
checkpoint_path, |
|
device_map="auto", |
|
torch_dtype=torch.bfloat16, |
|
trust_remote_code=True, |
|
) |
|
|
|
|
|
if self.tokenizer.pad_token is None: |
|
self.tokenizer.pad_token = self.tokenizer.eos_token |
|
|
|
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: |
|
""" |
|
data args: |
|
inputs (:str): a string to be generated from |
|
parameters (:dict): generation parameters |
|
Return: |
|
A :obj:`list` | `dict`: will be serialized and returned |
|
""" |
|
|
|
inputs = data.pop("inputs", data) |
|
parameters = data.pop("parameters", {}) |
|
|
|
|
|
if isinstance(inputs, str): |
|
input_text = inputs |
|
else: |
|
input_text = str(inputs) |
|
|
|
|
|
max_new_tokens = parameters.get("max_new_tokens", 1000) |
|
temperature = parameters.get("temperature", 0.1) |
|
do_sample = parameters.get("do_sample", True) |
|
top_p = parameters.get("top_p", 0.9) |
|
return_full_text = parameters.get("return_full_text", False) |
|
|
|
|
|
input_ids = self.tokenizer( |
|
input_text, |
|
return_tensors="pt", |
|
padding=True, |
|
truncation=True, |
|
max_length=2048 |
|
).to(self.model.device) |
|
|
|
|
|
with torch.no_grad(): |
|
generated_ids = self.model.generate( |
|
**input_ids, |
|
max_new_tokens=max_new_tokens, |
|
temperature=temperature, |
|
do_sample=do_sample, |
|
top_p=top_p, |
|
pad_token_id=self.tokenizer.pad_token_id, |
|
eos_token_id=self.tokenizer.eos_token_id, |
|
) |
|
|
|
|
|
if return_full_text: |
|
generated_text = self.tokenizer.decode(generated_ids[0], skip_special_tokens=True) |
|
else: |
|
|
|
new_tokens = generated_ids[0][input_ids["input_ids"].shape[1]:] |
|
generated_text = self.tokenizer.decode(new_tokens, skip_special_tokens=True) |
|
|
|
return [{"generated_text": generated_text}] |