--- library_name: transformers license: mit base_model: roberta-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: vulnerability-severity-classification-roberta-base results: [] --- # vulnerability-severity-classification-roberta-base This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4963 - Accuracy: 0.8298 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:------:|:---------------:|:--------:| | 0.5857 | 1.0 | 27531 | 0.6245 | 0.7464 | | 0.6164 | 2.0 | 55062 | 0.5566 | 0.7777 | | 0.467 | 3.0 | 82593 | 0.5368 | 0.8013 | | 0.4208 | 4.0 | 110124 | 0.4849 | 0.8209 | | 0.2856 | 5.0 | 137655 | 0.4963 | 0.8298 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.7.1+cu126 - Datasets 3.6.0 - Tokenizers 0.21.1