cedricbonhomme commited on
Commit
e9ba89c
·
verified ·
1 Parent(s): 4c90296

End of training

Browse files
Files changed (3) hide show
  1. README.md +14 -40
  2. emissions.csv +1 -1
  3. model.safetensors +1 -1
README.md CHANGED
@@ -9,8 +9,6 @@ metrics:
9
  model-index:
10
  - name: vulnerability-severity-classification-roberta-base
11
  results: []
12
- datasets:
13
- - CIRCL/vulnerability-scores
14
  ---
15
 
16
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -18,46 +16,22 @@ should probably proofread and complete it, then remove this comment. -->
18
 
19
  # vulnerability-severity-classification-roberta-base
20
 
21
- This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the dataset [CIRCL/vulnerability-scores](https://huggingface.co/datasets/CIRCL/vulnerability-scores).
22
-
23
- You can read [this page](https://www.vulnerability-lookup.org/user-manual/ai/) for more information.
24
-
25
  It achieves the following results on the evaluation set:
26
- - Loss: 0.5004
27
- - Accuracy: 0.8293
28
 
29
  ## Model description
30
 
31
- It is a classification model and is aimed to assist in classifying vulnerabilities by severity based on their descriptions.
32
-
33
-
34
- ## How to get started with the model
35
-
36
- ```python
37
- from transformers import AutoModelForSequenceClassification, AutoTokenizer
38
- import torch
39
-
40
- labels = ["low", "medium", "high", "critical"]
41
 
42
- model_name = "CIRCL/vulnerability-severity-classification-distilbert-base-uncased"
43
- tokenizer = AutoTokenizer.from_pretrained(model_name)
44
- model = AutoModelForSequenceClassification.from_pretrained(model_name)
45
- model.eval()
46
 
47
- test_description = "SAP NetWeaver Visual Composer Metadata Uploader is not protected with a proper authorization, allowing unauthenticated agent to upload potentially malicious executable binaries \
48
- that could severely harm the host system. This could significantly affect the confidentiality, integrity, and availability of the targeted system."
49
- inputs = tokenizer(test_description, return_tensors="pt", truncation=True, padding=True)
50
 
51
- # Run inference
52
- with torch.no_grad():
53
- outputs = model(**inputs)
54
- predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
55
 
56
- # Print results
57
- print("Predictions:", predictions)
58
- predicted_class = torch.argmax(predictions, dim=-1).item()
59
- print("Predicted severity:", labels[predicted_class])
60
- ```
61
 
62
  ## Training procedure
63
 
@@ -76,11 +50,11 @@ The following hyperparameters were used during training:
76
 
77
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
78
  |:-------------:|:-----:|:------:|:---------------:|:--------:|
79
- | 0.6697 | 1.0 | 27326 | 0.6337 | 0.7444 |
80
- | 0.4882 | 2.0 | 54652 | 0.5695 | 0.7761 |
81
- | 0.4137 | 3.0 | 81978 | 0.5285 | 0.7983 |
82
- | 0.3413 | 4.0 | 109304 | 0.5046 | 0.8197 |
83
- | 0.2704 | 5.0 | 136630 | 0.5004 | 0.8293 |
84
 
85
 
86
  ### Framework versions
@@ -88,4 +62,4 @@ The following hyperparameters were used during training:
88
  - Transformers 4.51.3
89
  - Pytorch 2.7.0+cu126
90
  - Datasets 3.6.0
91
- - Tokenizers 0.21.1
 
9
  model-index:
10
  - name: vulnerability-severity-classification-roberta-base
11
  results: []
 
 
12
  ---
13
 
14
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
16
 
17
  # vulnerability-severity-classification-roberta-base
18
 
19
+ This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset.
 
 
 
20
  It achieves the following results on the evaluation set:
21
+ - Loss: 0.5091
22
+ - Accuracy: 0.8246
23
 
24
  ## Model description
25
 
26
+ More information needed
 
 
 
 
 
 
 
 
 
27
 
28
+ ## Intended uses & limitations
 
 
 
29
 
30
+ More information needed
 
 
31
 
32
+ ## Training and evaluation data
 
 
 
33
 
34
+ More information needed
 
 
 
 
35
 
36
  ## Training procedure
37
 
 
50
 
51
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
52
  |:-------------:|:-----:|:------:|:---------------:|:--------:|
53
+ | 0.744 | 1.0 | 27380 | 0.6382 | 0.7456 |
54
+ | 0.5737 | 2.0 | 54760 | 0.5687 | 0.7722 |
55
+ | 0.5525 | 3.0 | 82140 | 0.5280 | 0.7964 |
56
+ | 0.4037 | 4.0 | 109520 | 0.5090 | 0.8141 |
57
+ | 0.2646 | 5.0 | 136900 | 0.5091 | 0.8246 |
58
 
59
 
60
  ### Framework versions
 
62
  - Transformers 4.51.3
63
  - Pytorch 2.7.0+cu126
64
  - Datasets 3.6.0
65
+ - Tokenizers 0.21.1
emissions.csv CHANGED
@@ -1,2 +1,2 @@
1
  timestamp,project_name,run_id,experiment_id,duration,emissions,emissions_rate,cpu_power,gpu_power,ram_power,cpu_energy,gpu_energy,ram_energy,energy_consumed,country_name,country_iso_code,region,cloud_provider,cloud_region,os,python_version,codecarbon_version,cpu_count,cpu_model,gpu_count,gpu_model,longitude,latitude,ram_total_size,tracking_mode,on_cloud,pue
2
- 2025-06-02T13:59:48,codecarbon,d6d4ebcb-7b64-49bd-a1b9-58ac3cd6d19d,5b0fa12a-3dd7-45bb-9766-cc326314d9f1,32367.434696137905,0.5816748921396911,1.7970991448670377e-05,42.5,399.66151206309655,94.34468364715576,0.3818975383083689,4.29628874675047,0.8477334791478729,5.525919764206711,Luxembourg,LUX,luxembourg,,,Linux-6.8.0-60-generic-x86_64-with-glibc2.39,3.12.3,2.8.4,64,AMD EPYC 9124 16-Core Processor,2,2 x NVIDIA L40S,6.1294,49.6113,251.58582305908203,machine,N,1.0
 
1
  timestamp,project_name,run_id,experiment_id,duration,emissions,emissions_rate,cpu_power,gpu_power,ram_power,cpu_energy,gpu_energy,ram_energy,energy_consumed,country_name,country_iso_code,region,cloud_provider,cloud_region,os,python_version,codecarbon_version,cpu_count,cpu_model,gpu_count,gpu_model,longitude,latitude,ram_total_size,tracking_mode,on_cloud,pue
2
+ 2025-06-06T16:41:30,codecarbon,3873d026-9eaf-43d9-8dbc-c99c09d26094,5b0fa12a-3dd7-45bb-9766-cc326314d9f1,22914.07296414394,0.4089048731829486,1.7845141447476625e-05,42.5,214.69427455783162,94.34468364715576,0.2703376020925034,3.0141753816161483,0.6000891384325414,3.8846021221411946,Luxembourg,LUX,luxembourg,,,Linux-6.8.0-60-generic-x86_64-with-glibc2.39,3.12.3,2.8.4,64,AMD EPYC 9124 16-Core Processor,2,2 x NVIDIA L40S,6.1294,49.6113,251.58582305908203,machine,N,1.0
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:251990ee36e2f1ec28f38cd7c4964ab6614d609f936dbfda468b980d2dcf8538
3
  size 498618976
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a5723e8e45504ff8a743826ae0286f506098b922f6aa7310b6fa7593fa5d9678
3
  size 498618976