Update README.md
Browse files
README.md
CHANGED
@@ -17,6 +17,51 @@ This model was introduced in our ACL 2025 paper, [Enhancing Text Editing for Gra
|
|
17 |
The model was fine-tuned to fix punctuation (i.e., Pnx) errors. Details about the training procedure, data preprocessing, and hyperparameters are available in the paper.
|
18 |
The fine-tuning code and associated resources are publicly available on our GitHub repository: https://github.com/CAMeL-Lab/text-editing.
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
|
22 |
## Citation
|
|
|
17 |
The model was fine-tuned to fix punctuation (i.e., Pnx) errors. Details about the training procedure, data preprocessing, and hyperparameters are available in the paper.
|
18 |
The fine-tuning code and associated resources are publicly available on our GitHub repository: https://github.com/CAMeL-Lab/text-editing.
|
19 |
|
20 |
+
## Intended uses
|
21 |
+
To use the `CAMeL-Lab/text-editing-qalb14-pnx` model, you must clone our text editing [GitHub repository](https://github.com/CAMeL-Lab/text-editing) and follow the installation requirements.
|
22 |
+
We used this SWEET<sub>Pnx</sub> model to report results on the QALB-2014 dev and test sets in our [paper](https://arxiv.org/abs/2503.00985).
|
23 |
+
This model is intended to be used with SWEET<sub>NoPnx</sub> ([`CAMeL-Lab/text-editing-qalb14-nopnx`](https://huggingface.co/CAMeL-Lab/text-editing-qalb14-nopnx)) model.
|
24 |
+
|
25 |
+
## How to use
|
26 |
+
Clone our text editing [GitHub repository](https://github.com/CAMeL-Lab/text-editing) and follow the installation requirements
|
27 |
+
|
28 |
+
```python
|
29 |
+
from transformers import BertTokenizer, BertForTokenClassification
|
30 |
+
import torch
|
31 |
+
import torch.nn.functional as F
|
32 |
+
from gec.tag import rewrite
|
33 |
+
|
34 |
+
|
35 |
+
nopnx_tokenizer = BertTokenizer.from_pretrained('CAMeL-Lab/text-editing-qalb14-nopnx')
|
36 |
+
nopnx_model = BertForTokenClassification.from_pretrained('CAMeL-Lab/text-editing-qalb14-nopnx')
|
37 |
+
|
38 |
+
pnx_tokenizer = BertTokenizer.from_pretrained('CAMeL-Lab/text-editing-qalb14-pnx')
|
39 |
+
pnx_model = BertForTokenClassification.from_pretrained('CAMeL-Lab/text-editing-qalb14-pnx')
|
40 |
+
|
41 |
+
|
42 |
+
def predict(model, tokenizer, text, decode_iter=1):
|
43 |
+
for _ in range(decode_iter):
|
44 |
+
tokenized_text = tokenizer(text, return_tensors="pt", is_split_into_words=True)
|
45 |
+
with torch.no_grad():
|
46 |
+
logits = model(**tokenized_text).logits
|
47 |
+
preds = F.softmax(logits.squeeze(), dim=-1)
|
48 |
+
preds = torch.argmax(preds, dim=-1).cpu().numpy()
|
49 |
+
edits = [model.config.id2label[p] for p in preds[1:-1]]
|
50 |
+
|
51 |
+
assert len(edits) == len(tokenized_text['input_ids'][0][1:-1])
|
52 |
+
subwords = tokenizer.convert_ids_to_tokens(tokenized_text['input_ids'][0][1:-1])
|
53 |
+
text = rewrite(subwords=[subwords], edits=[edits])[0][0]
|
54 |
+
return text
|
55 |
+
|
56 |
+
|
57 |
+
text = 'يجب الإهتمام ب الصحه و لا سيما ف ي الصحه النفسيه ياشباب المستقبل،،'.split()
|
58 |
+
|
59 |
+
output_sent = predict(nopnx_model, nopnx_tokenizer, text, decode_iter=2)
|
60 |
+
output_sent = predict(pnx_model, pnx_tokenizer, output_sent.split(), decode_iter=1)
|
61 |
+
print(output_sent) # يجب الاهتمام بالصحة ولا سيما في الصحة النفسية يا شباب المستقبل .
|
62 |
+
|
63 |
+
```
|
64 |
+
|
65 |
|
66 |
|
67 |
## Citation
|