--- license: mit language: - ar base_model: - aubmindlab/bert-base-arabertv02 pipeline_tag: token-classification --- # SWEETNoPnx QALB-2014 Model ## Model Description `CAMeL-Lab/text-editing-qalb14-nopnx` is a text editing model tailored for grammatical error correction (GEC) in Modern Standard Arabic (MSA). The model is based on [AraBERTv02](https://huggingface.co/aubmindlab/bert-base-arabertv02), which we fine-tuned using the [QALB-2014](https://camel.abudhabi.nyu.edu/qalb-shared-task-2015/) dataset. This model was introduced in our ACL 2025 paper, [Enhancing Text Editing for Grammatical Error Correction: Arabic as a Case Study](https://arxiv.org/abs/2503.00985), where we refer to it as SWEET (Subword Edit Error Tagger). The model was fine-tuned to fix non-punctuation (i.e., NoPnx) errors. Details about the training procedure, data preprocessing, and hyperparameters are available in the paper. The fine-tuning code and associated resources are publicly available on our GitHub repository: https://github.com/CAMeL-Lab/text-editing. ## Intended uses To use the `CAMeL-Lab/text-editing-qalb14-nopnx` model, you must clone our text editing [GitHub repository](https://github.com/CAMeL-Lab/text-editing) and follow the installation requirements. We used this SWEETNoPnx model to report results on the QALB-2014 dev and test sets in our [paper](https://arxiv.org/abs/2503.00985). This model is intended to be used with SWEETPnx ([`CAMeL-Lab/text-editing-qalb14-pnx`](https://huggingface.co/CAMeL-Lab/text-editing-qalb14-pnx)) model. ## How to use Clone our text editing [GitHub repository](https://github.com/CAMeL-Lab/text-editing) and follow the installation requirements ```python from transformers import BertTokenizer, BertForTokenClassification import torch import torch.nn.functional as F from gec.tag import rewrite nopnx_tokenizer = BertTokenizer.from_pretrained('CAMeL-Lab/text-editing-qalb14-nopnx') nopnx_model = BertForTokenClassification.from_pretrained('CAMeL-Lab/text-editing-qalb14-nopnx') pnx_tokenizer = BertTokenizer.from_pretrained('CAMeL-Lab/text-editing-qalb14-pnx') pnx_model = BertForTokenClassification.from_pretrained('CAMeL-Lab/text-editing-qalb14-pnx') def predict(model, tokenizer, text, decode_iter=1): for _ in range(decode_iter): tokenized_text = tokenizer(text, return_tensors="pt", is_split_into_words=True) with torch.no_grad(): logits = model(**tokenized_text).logits preds = F.softmax(logits.squeeze(), dim=-1) preds = torch.argmax(preds, dim=-1).cpu().numpy() edits = [model.config.id2label[p] for p in preds[1:-1]] assert len(edits) == len(tokenized_text['input_ids'][0][1:-1]) subwords = tokenizer.convert_ids_to_tokens(tokenized_text['input_ids'][0][1:-1]) text = rewrite(subwords=[subwords], edits=[edits])[0][0] return text text = 'يجب الإهتمام ب الصحه و لا سيما ف ي الصحه النفسيه ياشباب المستقبل،،'.split() output_sent = predict(nopnx_model, nopnx_tokenizer, text, decode_iter=2) output_sent = predict(pnx_model, pnx_tokenizer, output_sent.split(), decode_iter=1) print(output_sent) # يجب الاهتمام بالصحة ولا سيما في الصحة النفسية يا شباب المستقبل . ``` ## Citation ```bibtex @inter{alhafni-habash-2025-enhancing, title={Enhancing Text Editing for Grammatical Error Correction: Arabic as a Case Study}, author={Bashar Alhafni and Nizar Habash}, year={2025}, eprint={2503.00985}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2503.00985}, } ```