{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import torch\n", "from tqdm.auto import tqdm\n", "\n", "from point_e.diffusion.configs import DIFFUSION_CONFIGS, diffusion_from_config\n", "from point_e.diffusion.sampler import PointCloudSampler\n", "from point_e.models.download import load_checkpoint\n", "from point_e.models.configs import MODEL_CONFIGS, model_from_config\n", "from point_e.util.plotting import plot_point_cloud" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "creating base model...\n", "creating upsample model...\n", "downloading base checkpoint...\n", "downloading upsampler checkpoint...\n" ] }, { "data": { "text/plain": [ "" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "device = torch.device('cuda')\n", "\n", "print('creating base model...')\n", "base_name = 'base40M-textvec'\n", "base_model = model_from_config(MODEL_CONFIGS[base_name], device)\n", "base_model.eval()\n", "base_diffusion = diffusion_from_config(DIFFUSION_CONFIGS[base_name])\n", "\n", "print('creating upsample model...')\n", "upsampler_model = model_from_config(MODEL_CONFIGS['upsample'], device)\n", "upsampler_model.eval()\n", "upsampler_diffusion = diffusion_from_config(DIFFUSION_CONFIGS['upsample'])\n", "\n", "print('downloading base checkpoint...')\n", "base_model.load_state_dict(load_checkpoint(base_name, device))\n", "\n", "print('downloading upsampler checkpoint...')\n", "upsampler_model.load_state_dict(load_checkpoint('upsample', device))" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "sampler = PointCloudSampler(\n", " device=device,\n", " models=[base_model, upsampler_model],\n", " diffusions=[base_diffusion, upsampler_diffusion],\n", " num_points=[1024, 4096 - 1024],\n", " aux_channels=['R', 'G', 'B'],\n", " guidance_scale=[3.0, 0.0],\n", " model_kwargs_key_filter=('texts', ''), # Do not condition the upsampler at all\n", ")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "2777bd89bbef428aaae750480cbdf123", "version_major": 2, "version_minor": 0 }, "text/plain": [ "0it [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Set a prompt to condition on.\n", "prompt = 'a yellow dinosaur'\n", "\n", "# Produce a sample from the model.\n", "samples = None\n", "for x in tqdm(sampler.sample_batch_progressive(batch_size=1, model_kwargs=dict(texts=[prompt]))):\n", " samples = x" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "pc = sampler.output_to_point_clouds(samples)[0]\n", "fig = plot_point_cloud(pc, grid_size=3, fixed_bounds=((-0.75, -0.75, -0.75),(0.75, 0.75, 0.75)))" ] } ], "metadata": { "kernelspec": { "display_name": "Python (GPU)", "language": "python", "name": "gpu_env" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.5" }, "vscode": { "interpreter": { "hash": "b270b0f43bc427bcab7703c037711644cc480aac7c1cc8d2940cfaf0b447ee2e" } } }, "nbformat": 4, "nbformat_minor": 4 }