import torch import torch.nn as nn import pdb import math from transformers.activations import ACT2FN from einops import rearrange, reduce, repeat from inspect import isfunction import math import torch.nn.functional as F from torch import nn, einsum from einops import rearrange, repeat from typing import Optional, Any try: import xformers import xformers.ops XFORMERS_IS_AVAILBLE = True except: XFORMERS_IS_AVAILBLE = False import importlib import numpy as np import cv2, os import torch.distributed as dist def count_params(model, verbose=False): total_params = sum(p.numel() for p in model.parameters()) if verbose: print(f"{model.__class__.__name__} has {total_params*1.e-6:.2f} M params.") return total_params def check_istarget(name, para_list): """ name: full name of source para para_list: partial name of target para """ istarget = False for para in para_list: if para in name: return True return istarget def instantiate_from_config(config): if not "target" in config: if config == "__is_first_stage__": return None elif config == "__is_unconditional__": return None raise KeyError("Expected key `target` to instantiate.") return get_obj_from_str(config["target"])(**config.get("params", dict())) def get_obj_from_str(string, reload=False): module, cls = string.rsplit(".", 1) if reload: module_imp = importlib.import_module(module) importlib.reload(module_imp) return getattr(importlib.import_module(module, package=None), cls) def load_npz_from_dir(data_dir): data = [ np.load(os.path.join(data_dir, data_name))["arr_0"] for data_name in os.listdir(data_dir) ] data = np.concatenate(data, axis=0) return data def load_npz_from_paths(data_paths): data = [np.load(data_path)["arr_0"] for data_path in data_paths] data = np.concatenate(data, axis=0) return data def resize_numpy_image(image, max_resolution=512 * 512, resize_short_edge=None): h, w = image.shape[:2] if resize_short_edge is not None: k = resize_short_edge / min(h, w) else: k = max_resolution / (h * w) k = k**0.5 h = int(np.round(h * k / 64)) * 64 w = int(np.round(w * k / 64)) * 64 image = cv2.resize(image, (w, h), interpolation=cv2.INTER_LANCZOS4) return image def setup_dist(args): if dist.is_initialized(): return torch.cuda.set_device(args.local_rank) torch.distributed.init_process_group("nccl", init_method="env://") # adopted from # https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py # and # https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py # and # https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py # # thanks! import torch.nn as nn import math from inspect import isfunction import torch from torch import nn import torch.distributed as dist def gather_data(data, return_np=True): """gather data from multiple processes to one list""" data_list = [torch.zeros_like(data) for _ in range(dist.get_world_size())] dist.all_gather(data_list, data) # gather not supported with NCCL if return_np: data_list = [data.cpu().numpy() for data in data_list] return data_list def autocast(f): def do_autocast(*args, **kwargs): with torch.cuda.amp.autocast( enabled=True, dtype=torch.get_autocast_gpu_dtype(), cache_enabled=torch.is_autocast_cache_enabled(), ): return f(*args, **kwargs) return do_autocast def extract_into_tensor(a, t, x_shape): b, *_ = t.shape out = a.gather(-1, t) return out.reshape(b, *((1,) * (len(x_shape) - 1))) def noise_like(shape, device, repeat=False): repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat( shape[0], *((1,) * (len(shape) - 1)) ) noise = lambda: torch.randn(shape, device=device) return repeat_noise() if repeat else noise() def default(val, d): if exists(val): return val return d() if isfunction(d) else d def exists(val): return val is not None def identity(*args, **kwargs): return nn.Identity() def uniq(arr): return {el: True for el in arr}.keys() def mean_flat(tensor): """ Take the mean over all non-batch dimensions. """ return tensor.mean(dim=list(range(1, len(tensor.shape)))) def ismap(x): if not isinstance(x, torch.Tensor): return False return (len(x.shape) == 4) and (x.shape[1] > 3) def isimage(x): if not isinstance(x, torch.Tensor): return False return (len(x.shape) == 4) and (x.shape[1] == 3 or x.shape[1] == 1) def max_neg_value(t): return -torch.finfo(t.dtype).max def shape_to_str(x): shape_str = "x".join([str(x) for x in x.shape]) return shape_str def init_(tensor): dim = tensor.shape[-1] std = 1 / math.sqrt(dim) tensor.uniform_(-std, std) return tensor def disabled_train(self, mode=True): """Overwrite model.train with this function to make sure train/eval mode does not change anymore.""" return self def zero_module(module): """ Zero out the parameters of a module and return it. """ for p in module.parameters(): p.detach().zero_() return module def scale_module(module, scale): """ Scale the parameters of a module and return it. """ for p in module.parameters(): p.detach().mul_(scale) return module def conv_nd(dims, *args, **kwargs): """ Create a 1D, 2D, or 3D convolution module. """ if dims == 1: return nn.Conv1d(*args, **kwargs) elif dims == 2: return nn.Conv2d(*args, **kwargs) elif dims == 3: return nn.Conv3d(*args, **kwargs) raise ValueError(f"unsupported dimensions: {dims}") def linear(*args, **kwargs): """ Create a linear module. """ return nn.Linear(*args, **kwargs) def avg_pool_nd(dims, *args, **kwargs): """ Create a 1D, 2D, or 3D average pooling module. """ if dims == 1: return nn.AvgPool1d(*args, **kwargs) elif dims == 2: return nn.AvgPool2d(*args, **kwargs) elif dims == 3: return nn.AvgPool3d(*args, **kwargs) raise ValueError(f"unsupported dimensions: {dims}") def nonlinearity(type="silu"): if type == "silu": return nn.SiLU() elif type == "leaky_relu": return nn.LeakyReLU() class GroupNormSpecific(nn.GroupNorm): def forward(self, x): if x.dtype == torch.float16 or x.dtype == torch.bfloat16: return super().forward(x).type(x.dtype) else: return super().forward(x.float()).type(x.dtype) def normalization(channels, num_groups=32): """ Make a standard normalization layer. :param channels: number of input channels. :return: an nn.Module for normalization. """ return GroupNormSpecific(num_groups, channels) class HybridConditioner(nn.Module): def __init__(self, c_concat_config, c_crossattn_config): super().__init__() self.concat_conditioner = instantiate_from_config(c_concat_config) self.crossattn_conditioner = instantiate_from_config(c_crossattn_config) def forward(self, c_concat, c_crossattn): c_concat = self.concat_conditioner(c_concat) c_crossattn = self.crossattn_conditioner(c_crossattn) return {"c_concat": [c_concat], "c_crossattn": [c_crossattn]} def exists(val): return val is not None def uniq(arr): return {el: True for el in arr}.keys() def default(val, d): if exists(val): return val return d() if isfunction(d) else d def max_neg_value(t): return -torch.finfo(t.dtype).max def init_(tensor): dim = tensor.shape[-1] std = 1 / math.sqrt(dim) tensor.uniform_(-std, std) return tensor # feedforward class GEGLU(nn.Module): def __init__(self, dim_in, dim_out): super().__init__() self.proj = nn.Linear(dim_in, dim_out * 2) def forward(self, x): x, gate = self.proj(x).chunk(2, dim=-1) return x * F.gelu(gate) class FeedForward(nn.Module): def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.0): super().__init__() inner_dim = int(dim * mult) dim_out = default(dim_out, dim) project_in = ( nn.Sequential(nn.Linear(dim, inner_dim), nn.GELU()) if not glu else GEGLU(dim, inner_dim) ) self.net = nn.Sequential( project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out) ) def forward(self, x): return self.net(x) def zero_module(module): """ Zero out the parameters of a module and return it. """ for p in module.parameters(): p.detach().zero_() return module def Normalize(in_channels, num_groups=32): return torch.nn.GroupNorm( num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True ) class RelativePosition(nn.Module): """https://github.com/evelinehong/Transformer_Relative_Position_PyTorch/blob/master/relative_position.py""" def __init__(self, num_units, max_relative_position): super().__init__() self.num_units = num_units self.max_relative_position = max_relative_position self.embeddings_table = nn.Parameter( torch.Tensor(max_relative_position * 2 + 1, num_units) ) nn.init.xavier_uniform_(self.embeddings_table) def forward(self, length_q, length_k): device = self.embeddings_table.device range_vec_q = torch.arange(length_q, device=device) range_vec_k = torch.arange(length_k, device=device) distance_mat = range_vec_k[None, :] - range_vec_q[:, None] distance_mat_clipped = torch.clamp( distance_mat, -self.max_relative_position, self.max_relative_position ) final_mat = distance_mat_clipped + self.max_relative_position # final_mat = torch.LongTensor(final_mat).to(self.embeddings_table.device) # final_mat = torch.tensor(final_mat, device=self.embeddings_table.device, dtype=torch.long) final_mat = final_mat.long() embeddings = self.embeddings_table[final_mat] return embeddings class TemporalCrossAttention(nn.Module): def __init__( self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0, temporal_length=None, # For relative positional representation and image-video joint training. image_length=None, # For image-video joint training. use_relative_position=False, # whether use relative positional representation in temporal attention. img_video_joint_train=False, # For image-video joint training. use_tempoal_causal_attn=False, bidirectional_causal_attn=False, tempoal_attn_type=None, joint_train_mode="same_batch", **kwargs, ): super().__init__() inner_dim = dim_head * heads context_dim = default(context_dim, query_dim) self.context_dim = context_dim self.scale = dim_head**-0.5 self.heads = heads self.temporal_length = temporal_length self.use_relative_position = use_relative_position self.img_video_joint_train = img_video_joint_train self.bidirectional_causal_attn = bidirectional_causal_attn self.joint_train_mode = joint_train_mode assert joint_train_mode in ["same_batch", "diff_batch"] self.tempoal_attn_type = tempoal_attn_type if bidirectional_causal_attn: assert use_tempoal_causal_attn if tempoal_attn_type: assert tempoal_attn_type in ["sparse_causal", "sparse_causal_first"] assert not use_tempoal_causal_attn assert not ( img_video_joint_train and (self.joint_train_mode == "same_batch") ) self.to_q = nn.Linear(query_dim, inner_dim, bias=False) self.to_k = nn.Linear(context_dim, inner_dim, bias=False) self.to_v = nn.Linear(context_dim, inner_dim, bias=False) assert not ( img_video_joint_train and (self.joint_train_mode == "same_batch") and use_tempoal_causal_attn ) if img_video_joint_train: if self.joint_train_mode == "same_batch": mask = torch.ones( [1, temporal_length + image_length, temporal_length + image_length] ) # mask[:, image_length:, :] = 0 # mask[:, :, image_length:] = 0 mask[:, temporal_length:, :] = 0 mask[:, :, temporal_length:] = 0 self.mask = mask else: self.mask = None elif use_tempoal_causal_attn: # normal causal attn self.mask = torch.tril(torch.ones([1, temporal_length, temporal_length])) elif tempoal_attn_type == "sparse_causal": # all frames interact with only the `prev` & self frame mask1 = torch.tril( torch.ones([1, temporal_length, temporal_length]) ).bool() # true indicates keeping mask2 = torch.zeros( [1, temporal_length, temporal_length] ) # initialize to same shape with mask1 mask2[:, 2:temporal_length, : temporal_length - 2] = torch.tril( torch.ones([1, temporal_length - 2, temporal_length - 2]) ) mask2 = (1 - mask2).bool() # false indicates masking self.mask = mask1 & mask2 elif tempoal_attn_type == "sparse_causal_first": # all frames interact with only the `first` & self frame mask1 = torch.tril( torch.ones([1, temporal_length, temporal_length]) ).bool() # true indicates keeping mask2 = torch.zeros([1, temporal_length, temporal_length]) mask2[:, 2:temporal_length, 1 : temporal_length - 1] = torch.tril( torch.ones([1, temporal_length - 2, temporal_length - 2]) ) mask2 = (1 - mask2).bool() # false indicates masking self.mask = mask1 & mask2 else: self.mask = None if use_relative_position: assert temporal_length is not None self.relative_position_k = RelativePosition( num_units=dim_head, max_relative_position=temporal_length ) self.relative_position_v = RelativePosition( num_units=dim_head, max_relative_position=temporal_length ) self.to_out = nn.Sequential( nn.Linear(inner_dim, query_dim), nn.Dropout(dropout) ) nn.init.constant_(self.to_q.weight, 0) nn.init.constant_(self.to_k.weight, 0) nn.init.constant_(self.to_v.weight, 0) nn.init.constant_(self.to_out[0].weight, 0) nn.init.constant_(self.to_out[0].bias, 0) def forward(self, x, context=None, mask=None): # if context is None: # print(f'[Temp Attn] x={x.shape},context=None') # else: # print(f'[Temp Attn] x={x.shape},context={context.shape}') nh = self.heads out = x q = self.to_q(out) # if context is not None: # print(f'temporal context 1 ={context.shape}') # print(f'x={x.shape}') context = default(context, x) # print(f'temporal context 2 ={context.shape}') k = self.to_k(context) v = self.to_v(context) # print(f'q ={q.shape},k={k.shape}') q, k, v = map(lambda t: rearrange(t, "b n (h d) -> (b h) n d", h=nh), (q, k, v)) sim = einsum("b i d, b j d -> b i j", q, k) * self.scale if self.use_relative_position: len_q, len_k, len_v = q.shape[1], k.shape[1], v.shape[1] k2 = self.relative_position_k(len_q, len_k) sim2 = einsum("b t d, t s d -> b t s", q, k2) * self.scale # TODO check sim += sim2 # print('mask',mask) if exists(self.mask): if mask is None: mask = self.mask.to(sim.device) else: mask = self.mask.to(sim.device).bool() & mask # .to(sim.device) else: mask = mask # if self.img_video_joint_train: # # process mask (make mask same shape with sim) # c, h, w = mask.shape # c, t, s = sim.shape # # assert(h == w and t == s),f"mask={mask.shape}, sim={sim.shape}, h={h}, w={w}, t={t}, s={s}" # if h > t: # mask = mask[:, :t, :] # elif h < t: # pad zeros to mask (no attention) only initial mask =1 area compute weights # mask_ = torch.zeros([c,t,w]).to(mask.device) # mask_[:, :h, :] = mask # mask = mask_ # c, h, w = mask.shape # if w > s: # mask = mask[:, :, :s] # elif w < s: # pad zeros to mask # mask_ = torch.zeros([c,h,s]).to(mask.device) # mask_[:, :, :w] = mask # mask = mask_ # max_neg_value = -torch.finfo(sim.dtype).max # sim = sim.float().masked_fill(mask == 0, max_neg_value) if mask is not None: max_neg_value = -1e9 sim = sim + (1 - mask.float()) * max_neg_value # 1=masking,0=no masking # print('sim after masking: ', sim) # if torch.isnan(sim).any() or torch.isinf(sim).any() or (not sim.any()): # print(f'sim [after masking], isnan={torch.isnan(sim).any()}, isinf={torch.isinf(sim).any()}, allzero={not sim.any()}') attn = sim.softmax(dim=-1) # print('attn after softmax: ', attn) # if torch.isnan(attn).any() or torch.isinf(attn).any() or (not attn.any()): # print(f'attn [after softmax], isnan={torch.isnan(attn).any()}, isinf={torch.isinf(attn).any()}, allzero={not attn.any()}') # attn = torch.where(torch.isnan(attn), torch.full_like(attn,0), attn) # if torch.isinf(attn.detach()).any(): # import pdb;pdb.set_trace() # if torch.isnan(attn.detach()).any(): # import pdb;pdb.set_trace() out = einsum("b i j, b j d -> b i d", attn, v) if self.bidirectional_causal_attn: mask_reverse = torch.triu( torch.ones( [1, self.temporal_length, self.temporal_length], device=sim.device ) ) sim_reverse = sim.float().masked_fill(mask_reverse == 0, max_neg_value) attn_reverse = sim_reverse.softmax(dim=-1) out_reverse = einsum("b i j, b j d -> b i d", attn_reverse, v) out += out_reverse if self.use_relative_position: v2 = self.relative_position_v(len_q, len_v) out2 = einsum("b t s, t s d -> b t d", attn, v2) # TODO check out += out2 # TODO check:先add还是先merge head?先计算rpr,on split head之后的数据,然后再merge。 out = rearrange(out, "(b h) n d -> b n (h d)", h=nh) # merge head return self.to_out(out) class SpatialSelfAttention(nn.Module): def __init__(self, in_channels): super().__init__() self.in_channels = in_channels self.norm = Normalize(in_channels) self.q = torch.nn.Conv2d( in_channels, in_channels, kernel_size=1, stride=1, padding=0 ) self.k = torch.nn.Conv2d( in_channels, in_channels, kernel_size=1, stride=1, padding=0 ) self.v = torch.nn.Conv2d( in_channels, in_channels, kernel_size=1, stride=1, padding=0 ) self.proj_out = torch.nn.Conv2d( in_channels, in_channels, kernel_size=1, stride=1, padding=0 ) def forward(self, x): h_ = x h_ = self.norm(h_) q = self.q(h_) k = self.k(h_) v = self.v(h_) # compute attention b, c, h, w = q.shape q = rearrange(q, "b c h w -> b (h w) c") k = rearrange(k, "b c h w -> b c (h w)") w_ = torch.einsum("bij,bjk->bik", q, k) w_ = w_ * (int(c) ** (-0.5)) w_ = torch.nn.functional.softmax(w_, dim=2) # attend to values v = rearrange(v, "b c h w -> b c (h w)") w_ = rearrange(w_, "b i j -> b j i") h_ = torch.einsum("bij,bjk->bik", v, w_) h_ = rearrange(h_, "b c (h w) -> b c h w", h=h) h_ = self.proj_out(h_) return x + h_ class CrossAttention(nn.Module): def __init__( self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0, sa_shared_kv=False, shared_type="only_first", **kwargs, ): super().__init__() inner_dim = dim_head * heads context_dim = default(context_dim, query_dim) self.sa_shared_kv = sa_shared_kv assert shared_type in [ "only_first", "all_frames", "first_and_prev", "only_prev", "full", "causal", "full_qkv", ] self.shared_type = shared_type self.scale = dim_head**-0.5 self.heads = heads self.dim_head = dim_head self.to_q = nn.Linear(query_dim, inner_dim, bias=False) self.to_k = nn.Linear(context_dim, inner_dim, bias=False) self.to_v = nn.Linear(context_dim, inner_dim, bias=False) self.to_out = nn.Sequential( nn.Linear(inner_dim, query_dim), nn.Dropout(dropout) ) self.attention_op: Optional[Any] = None def forward(self, x, context=None, mask=None): h = self.heads b = x.shape[0] q = self.to_q(x) context = default(context, x) k = self.to_k(context) v = self.to_v(context) if self.sa_shared_kv: if self.shared_type == "only_first": k, v = map( lambda xx: rearrange(xx[0].unsqueeze(0), "b n c -> (b n) c") .unsqueeze(0) .repeat(b, 1, 1), (k, v), ) else: raise NotImplementedError q, k, v = map(lambda t: rearrange(t, "b n (h d) -> (b h) n d", h=h), (q, k, v)) sim = einsum("b i d, b j d -> b i j", q, k) * self.scale if exists(mask): mask = rearrange(mask, "b ... -> b (...)") max_neg_value = -torch.finfo(sim.dtype).max mask = repeat(mask, "b j -> (b h) () j", h=h) sim.masked_fill_(~mask, max_neg_value) # attention, what we cannot get enough of attn = sim.softmax(dim=-1) out = einsum("b i j, b j d -> b i d", attn, v) out = rearrange(out, "(b h) n d -> b n (h d)", h=h) return self.to_out(out) def efficient_forward(self, x, context=None, mask=None): q = self.to_q(x) context = default(context, x) k = self.to_k(context) v = self.to_v(context) b, _, _ = q.shape q, k, v = map( lambda t: t.unsqueeze(3) .reshape(b, t.shape[1], self.heads, self.dim_head) .permute(0, 2, 1, 3) .reshape(b * self.heads, t.shape[1], self.dim_head) .contiguous(), (q, k, v), ) # actually compute the attention, what we cannot get enough of out = xformers.ops.memory_efficient_attention( q, k, v, attn_bias=None, op=self.attention_op ) if exists(mask): raise NotImplementedError out = ( out.unsqueeze(0) .reshape(b, self.heads, out.shape[1], self.dim_head) .permute(0, 2, 1, 3) .reshape(b, out.shape[1], self.heads * self.dim_head) ) return self.to_out(out) class VideoSpatialCrossAttention(CrossAttention): def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0): super().__init__(query_dim, context_dim, heads, dim_head, dropout) def forward(self, x, context=None, mask=None): b, c, t, h, w = x.shape if context is not None: context = context.repeat(t, 1, 1) x = super.forward(spatial_attn_reshape(x), context=context) + x return spatial_attn_reshape_back(x, b, h) def spatial_attn_reshape(x): return rearrange(x, "b c t h w -> (b t) (h w) c") def spatial_attn_reshape_back(x, b, h): return rearrange(x, "(b t) (h w) c -> b c t h w", b=b, h=h) def temporal_attn_reshape(x): return rearrange(x, "b c t h w -> (b h w) t c") def temporal_attn_reshape_back(x, b, h, w): return rearrange(x, "(b h w) t c -> b c t h w", b=b, h=h, w=w) def local_spatial_temporal_attn_reshape(x, window_size): B, C, T, H, W = x.shape NH = H // window_size NW = W // window_size # x = x.view(B, C, T, NH, window_size, NW, window_size) # tokens = x.permute(0, 1, 2, 3, 5, 4, 6).contiguous() # tokens = tokens.view(-1, window_size, window_size, C) x = rearrange( x, "b c t (nh wh) (nw ww) -> b c t nh wh nw ww", nh=NH, nw=NW, wh=window_size, ww=window_size, ).contiguous() # # B, C, T, NH, NW, window_size, window_size x = rearrange( x, "b c t nh wh nw ww -> (b nh nw) (t wh ww) c" ) # (B, NH, NW) (T, window_size, window_size) C return x def local_spatial_temporal_attn_reshape_back(x, window_size, b, h, w, t): B, L, C = x.shape NH = h // window_size NW = w // window_size x = rearrange( x, "(b nh nw) (t wh ww) c -> b c t nh wh nw ww", b=b, nh=NH, nw=NW, t=t, wh=window_size, ww=window_size, ) x = rearrange(x, "b c t nh wh nw ww -> b c t (nh wh) (nw ww)") return x class SpatialTemporalTransformer(nn.Module): """ Transformer block for video-like data (5D tensor). First, project the input (aka embedding) with NO reshape. Then apply standard transformer action. The 5D -> 3D reshape operation will be done in the specific attention module. """ def __init__( self, in_channels, n_heads, d_head, depth=1, dropout=0.0, context_dim=None, # Temporal stuff temporal_length=None, image_length=None, use_relative_position=True, img_video_joint_train=False, cross_attn_on_tempoal=False, temporal_crossattn_type="selfattn", order="stst", temporalcrossfirst=False, split_stcontext=False, temporal_context_dim=None, **kwargs, ): super().__init__() self.in_channels = in_channels inner_dim = n_heads * d_head self.norm = Normalize(in_channels) self.proj_in = nn.Conv3d( in_channels, inner_dim, kernel_size=1, stride=1, padding=0 ) self.transformer_blocks = nn.ModuleList( [ BasicTransformerBlockST( inner_dim, n_heads, d_head, dropout=dropout, # cross attn context_dim=context_dim, # temporal attn temporal_length=temporal_length, image_length=image_length, use_relative_position=use_relative_position, img_video_joint_train=img_video_joint_train, temporal_crossattn_type=temporal_crossattn_type, order=order, temporalcrossfirst=temporalcrossfirst, split_stcontext=split_stcontext, temporal_context_dim=temporal_context_dim, **kwargs, ) for d in range(depth) ] ) self.proj_out = zero_module( nn.Conv3d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0) ) def forward(self, x, context=None, temporal_context=None, **kwargs): # note: if no context is given, cross-attention defaults to self-attention assert x.dim() == 5, f"x shape = {x.shape}" b, c, t, h, w = x.shape x_in = x x = self.norm(x) x = self.proj_in(x) for block in self.transformer_blocks: x = block(x, context=context, temporal_context=temporal_context, **kwargs) x = self.proj_out(x) return x + x_in class STAttentionBlock2(nn.Module): def __init__( self, channels, num_heads=1, num_head_channels=-1, use_checkpoint=False, # not used, only used in ResBlock use_new_attention_order=False, # QKVAttention or QKVAttentionLegacy temporal_length=16, # used in relative positional representation. image_length=8, # used for image-video joint training. use_relative_position=False, # whether use relative positional representation in temporal attention. img_video_joint_train=False, # norm_type="groupnorm", attn_norm_type="group", use_tempoal_causal_attn=False, ): """ version 1: guided_diffusion implemented version version 2: remove args input argument """ super().__init__() if num_head_channels == -1: self.num_heads = num_heads else: assert ( channels % num_head_channels == 0 ), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}" self.num_heads = channels // num_head_channels self.use_checkpoint = use_checkpoint self.temporal_length = temporal_length self.image_length = image_length self.use_relative_position = use_relative_position self.img_video_joint_train = img_video_joint_train self.attn_norm_type = attn_norm_type assert self.attn_norm_type in ["group", "no_norm"] self.use_tempoal_causal_attn = use_tempoal_causal_attn if self.attn_norm_type == "group": self.norm_s = normalization(channels) self.norm_t = normalization(channels) self.qkv_s = conv_nd(1, channels, channels * 3, 1) self.qkv_t = conv_nd(1, channels, channels * 3, 1) if self.img_video_joint_train: mask = torch.ones( [1, temporal_length + image_length, temporal_length + image_length] ) mask[:, temporal_length:, :] = 0 mask[:, :, temporal_length:] = 0 self.register_buffer("mask", mask) else: self.mask = None if use_new_attention_order: # split qkv before split heads self.attention_s = QKVAttention(self.num_heads) self.attention_t = QKVAttention(self.num_heads) else: # split heads before split qkv self.attention_s = QKVAttentionLegacy(self.num_heads) self.attention_t = QKVAttentionLegacy(self.num_heads) if use_relative_position: self.relative_position_k = RelativePosition( num_units=channels // self.num_heads, max_relative_position=temporal_length, ) self.relative_position_v = RelativePosition( num_units=channels // self.num_heads, max_relative_position=temporal_length, ) self.proj_out_s = zero_module( conv_nd(1, channels, channels, 1) ) # conv_dim, in_channels, out_channels, kernel_size self.proj_out_t = zero_module( conv_nd(1, channels, channels, 1) ) # conv_dim, in_channels, out_channels, kernel_size def forward(self, x, mask=None): b, c, t, h, w = x.shape # spatial out = rearrange(x, "b c t h w -> (b t) c (h w)") if self.attn_norm_type == "no_norm": qkv = self.qkv_s(out) else: qkv = self.qkv_s(self.norm_s(out)) out = self.attention_s(qkv) out = self.proj_out_s(out) out = rearrange(out, "(b t) c (h w) -> b c t h w", b=b, h=h) x += out # temporal out = rearrange(x, "b c t h w -> (b h w) c t") if self.attn_norm_type == "no_norm": qkv = self.qkv_t(out) else: qkv = self.qkv_t(self.norm_t(out)) # relative positional embedding if self.use_relative_position: len_q = qkv.size()[-1] len_k, len_v = len_q, len_q k_rp = self.relative_position_k(len_q, len_k) v_rp = self.relative_position_v(len_q, len_v) # [T,T,head_dim] out = self.attention_t( qkv, rp=(k_rp, v_rp), mask=self.mask, use_tempoal_causal_attn=self.use_tempoal_causal_attn, ) else: out = self.attention_t( qkv, rp=None, mask=self.mask, use_tempoal_causal_attn=self.use_tempoal_causal_attn, ) out = self.proj_out_t(out) out = rearrange(out, "(b h w) c t -> b c t h w", b=b, h=h, w=w) return x + out class QKVAttentionLegacy(nn.Module): """ A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping """ def __init__(self, n_heads): super().__init__() self.n_heads = n_heads def forward(self, qkv, rp=None, mask=None): """ Apply QKV attention. :param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs. :return: an [N x (H * C) x T] tensor after attention. """ if rp is not None or mask is not None: raise NotImplementedError bs, width, length = qkv.shape assert width % (3 * self.n_heads) == 0 ch = width // (3 * self.n_heads) q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1) scale = 1 / math.sqrt(math.sqrt(ch)) weight = torch.einsum( "bct,bcs->bts", q * scale, k * scale ) # More stable with f16 than dividing afterwards weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype) a = torch.einsum("bts,bcs->bct", weight, v) return a.reshape(bs, -1, length) @staticmethod def count_flops(model, _x, y): return count_flops_attn(model, _x, y) class QKVAttention(nn.Module): """ A module which performs QKV attention and splits in a different order. """ def __init__(self, n_heads): super().__init__() self.n_heads = n_heads def forward(self, qkv, rp=None, mask=None, use_tempoal_causal_attn=False): """ Apply QKV attention. :param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs. :return: an [N x (H * C) x T] tensor after attention. """ bs, width, length = qkv.shape assert width % (3 * self.n_heads) == 0 ch = width // (3 * self.n_heads) # print('qkv', qkv.size()) qkv=qkv.contiguous() q, k, v = qkv.chunk(3, dim=1) scale = 1 / math.sqrt(math.sqrt(ch)) # print('bs, self.n_heads, ch, length', bs, self.n_heads, ch, length) weight = torch.einsum( "bct,bcs->bts", (q * scale).view(bs * self.n_heads, ch, length), (k * scale).view(bs * self.n_heads, ch, length), ) # More stable with f16 than dividing afterwards # weight:[b,t,s] b=bs*n_heads*T if rp is not None: k_rp, v_rp = rp # [length, length, head_dim] [8, 8, 48] weight2 = torch.einsum( "bct,tsc->bst", (q * scale).view(bs * self.n_heads, ch, length), k_rp ) weight += weight2 if use_tempoal_causal_attn: # weight = torch.tril(weight) assert mask is None, f"Not implemented for merging two masks!" mask = torch.tril(torch.ones(weight.shape)) else: if mask is not None: # only keep upper-left matrix # process mask c, t, _ = weight.shape if mask.shape[-1] > t: mask = mask[:, :t, :t] elif mask.shape[-1] < t: # pad ones mask_ = torch.zeros([c, t, t]).to(mask.device) t_ = mask.shape[-1] mask_[:, :t_, :t_] = mask mask = mask_ else: assert ( weight.shape[-1] == mask.shape[-1] ), f"weight={weight.shape}, mask={mask.shape}" if mask is not None: INF = -1e8 # float('-inf') weight = weight.float().masked_fill(mask == 0, INF) weight = F.softmax(weight.float(), dim=-1).type( weight.dtype ) # [256, 8, 8] [b, t, t] b=bs*n_heads*h*w,t=nframes # weight = F.softmax(weight, dim=-1)#[256, 8, 8] [b, t, t] b=bs*n_heads*h*w,t=nframes a = torch.einsum( "bts,bcs->bct", weight, v.reshape(bs * self.n_heads, ch, length) ) # [256, 48, 8] [b, head_dim, t] if rp is not None: a2 = torch.einsum("bts,tsc->btc", weight, v_rp).transpose(1, 2) # btc->bct a += a2 return a.reshape(bs, -1, length) def silu(x): # swish return x * torch.sigmoid(x) class SiLU(nn.Module): def __init__(self): super(SiLU, self).__init__() def forward(self, x): return silu(x) def Normalize(in_channels, norm_type="group"): assert norm_type in ["group", "batch",'layer'] if norm_type == "group": return torch.nn.GroupNorm( num_groups=32, num_channels=in_channels, eps=1e-6, affine=True ) elif norm_type == "batch": return torch.nn.SyncBatchNorm(in_channels) elif norm_type == "layer": return nn.LayerNorm(in_channels) class SamePadConv3d(nn.Module): def __init__( self, in_channels, out_channels, kernel_size, stride=1, bias=True, padding_type="replicate", ): super().__init__() if isinstance(kernel_size, int): kernel_size = (kernel_size,) * 3 if isinstance(stride, int): stride = (stride,) * 3 # assumes that the input shape is divisible by stride total_pad = tuple([k - s for k, s in zip(kernel_size, stride)]) pad_input = [] for p in total_pad[::-1]: # reverse since F.pad starts from last dim pad_input.append((p // 2 + p % 2, p // 2)) pad_input = sum(pad_input, tuple()) self.pad_input = pad_input self.padding_type = padding_type self.conv = nn.Conv3d( in_channels, out_channels, kernel_size, stride=stride, padding=0, bias=bias ) def forward(self, x): tp=x.dtype x = x.float() # 执行填充操作 x_padded = F.pad(x, self.pad_input, mode=self.padding_type) # 如果需要,将结果转换回 BFloat16 x_padded = x_padded.to(tp) return self.conv(x_padded) class TemporalAttention(nn.Module): def __init__( self, channels, num_heads=1, num_head_channels=-1, max_temporal_length=64, ): """ a clean multi-head temporal attention """ super().__init__() if num_head_channels == -1: self.num_heads = num_heads else: assert ( channels % num_head_channels == 0 ), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}" self.num_heads = channels // num_head_channels self.norm = Normalize(channels) self.qkv = zero_module(conv_nd(1, channels, channels * 3, 1)) self.attention = QKVAttention(self.num_heads) self.relative_position_k = RelativePosition( num_units=channels // self.num_heads, max_relative_position=max_temporal_length, ) self.relative_position_v = RelativePosition( num_units=channels // self.num_heads, max_relative_position=max_temporal_length, ) self.proj_out = zero_module( conv_nd(1, channels, channels, 1) ) # conv_dim, in_channels, out_channels, kernel_size def forward(self, x, mask=None): b, c, t, h, w = x.shape out = rearrange(x, "b c t h w -> (b h w) c t") # torch.Size([4608, 1152, 2])1 # torch.Size([4608, 3456, 2])2 # torch.Size([4608, 1152, 2])3 # torch.Size([4608, 1152, 2])4 #print(out.shape,end='1\n') qkv = self.qkv(self.norm(out)) #print(qkv.shape,end='2\n') len_q = qkv.size()[-1] len_k, len_v = len_q, len_q k_rp = self.relative_position_k(len_q, len_k) v_rp = self.relative_position_v(len_q, len_v) # [T,T,head_dim] out = self.attention(qkv, rp=(k_rp, v_rp)) #print(out.shape,end='3\n') out = self.proj_out(out) #print(out.shape,end='4\n') out = rearrange(out, "(b h w) c t -> b c t h w", b=b, h=h, w=w) return x + out class TemporalAttention_lin(nn.Module): def __init__( self, channels, num_heads=8, num_head_channels=-1, max_temporal_length=64, ): """ a clean multi-head temporal attention """ super().__init__() if num_head_channels == -1: self.num_heads = num_heads else: assert ( channels % num_head_channels == 0 ), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}" self.num_heads = channels // num_head_channels self.norm = nn.LayerNorm(channels) #self.norm = Normalize(channels) #self.qkv = zero_module(conv_nd(1, channels, channels * 3, 1)) self.qkv = nn.Linear(channels, channels * 3) self.attention = QKVAttention(self.num_heads) self.relative_position_k = RelativePosition( num_units=channels // self.num_heads, max_relative_position=max_temporal_length, ) self.relative_position_v = RelativePosition( num_units=channels // self.num_heads, max_relative_position=max_temporal_length, ) self.proj_out = nn.Linear(channels, channels) def forward(self, x, mask=None): b, c, t, h, w = x.shape out = rearrange(x, "b c t h w -> (b h w) t c") # torch.Size([4608, 1152, 2])1 # torch.Size([4608, 3456, 2])2 # torch.Size([4608, 1152, 2])3 # torch.Size([4608, 1152, 2])4 #print(out.shape,end='1\n') qkv = self.qkv(self.norm(out)).transpose(-1, -2) #print(qkv.shape,end='2\n') len_q = qkv.size()[-1] len_k, len_v = len_q, len_q k_rp = self.relative_position_k(len_q, len_k) v_rp = self.relative_position_v(len_q, len_v) # [T,T,head_dim] out = self.attention(qkv, rp=(k_rp, v_rp)) out = self.proj_out(out.transpose(-1, -2)).transpose(-1, -2) #print(out.shape,end='4\n') out = rearrange(out, "(b h w) c t -> b c t h w", b=b, h=h, w=w) return x + out class AttnBlock3D(nn.Module): def __init__(self, in_channels): super().__init__() self.in_channels = in_channels self.norm = Normalize(in_channels) self.q = torch.nn.Conv3d( in_channels, in_channels, kernel_size=1, stride=1, padding=0 ) self.k = torch.nn.Conv3d( in_channels, in_channels, kernel_size=1, stride=1, padding=0 ) self.v = torch.nn.Conv3d( in_channels, in_channels, kernel_size=1, stride=1, padding=0 ) self.proj_out = torch.nn.Conv3d( in_channels, in_channels, kernel_size=1, stride=1, padding=0 ) def forward(self, x): h_ = x # self.norm.to(x.device) # self.norm.to(x.dtype) h_ = self.norm(h_) q = self.q(h_) k = self.k(h_) v = self.v(h_) b, c, t, h, w = q.shape # q = q.reshape(b,c,h*w) # bcl # q = q.permute(0,2,1) # bcl -> blc l=hw # k = k.reshape(b,c,h*w) # bcl q = rearrange(q, "b c t h w -> (b t) (h w) c") # blc k = rearrange(k, "b c t h w -> (b t) c (h w)") # bcl w_ = torch.bmm(q, k) # b,l,l w_ = w_ * (int(c) ** (-0.5)) w_ = torch.nn.functional.softmax(w_, dim=2) # v = v.reshape(b,c,h*w) v = rearrange(v, "b c t h w -> (b t) c (h w)") # bcl # attend to values w_ = w_.permute(0, 2, 1) # bll h_ = torch.bmm(v, w_) # bcl # h_ = h_.reshape(b,c,h,w) h_ = rearrange(h_, "(b t) c (h w) -> b c t h w", b=b, h=h) h_ = self.proj_out(h_) return x + h_ class MultiHeadAttention3D(nn.Module): def __init__(self, in_channels, num_heads=8): super().__init__() self.in_channels = in_channels self.num_heads = num_heads self.head_dim = in_channels // num_heads assert self.head_dim * num_heads == in_channels, "in_channels must be divisible by num_heads" self.norm = nn.LayerNorm(in_channels) self.q_linear = nn.Linear(in_channels, in_channels) self.k_linear = nn.Linear(in_channels, in_channels) self.v_linear = nn.Linear(in_channels, in_channels) self.proj_out = nn.Linear(in_channels, in_channels) def forward(self, x): b, c, t, h, w = x.shape #print(x.shape) # Normalize and reshape input h_ = rearrange(x, "b c t h w -> (b t) (h w) c") h_ = self.norm(h_) # Linear projections q = self.q_linear(h_) k = self.k_linear(h_) v = self.v_linear(h_) # Reshape to multi-head q = rearrange(q, "b l (h d) -> b h l d", h=self.num_heads) k = rearrange(k, "b l (h d) -> b h l d", h=self.num_heads) v = rearrange(v, "b l (h d) -> b h l d", h=self.num_heads) # Scaled Dot-Product Attention scores = torch.matmul(q, k.transpose(-2, -1)) / (self.head_dim ** 0.5) attn = F.softmax(scores, dim=-1) # Apply attention to values out = torch.matmul(attn, v) out = rearrange(out, "b h l d -> b l (h d)") # Project back to original dimension out = self.proj_out(out) # Reshape back to original shape out = rearrange(out, "(b t) (h w) c -> b c t h w", b=b, h=h, t=t) #print(out.shape) return x + out class SiglipAE(nn.Module): def __init__(self): super().__init__() temporal_stride=2 norm_type = "group" self.temporal_encoding = nn.Parameter(torch.randn((4,1152))) #self.vision_tower=SigLipVisionTower('google/siglip-so400m-patch14-384') self.encoder=nn.Sequential( AttnBlock3D(1152), TemporalAttention(1152), SamePadConv3d(1152,1152,kernel_size=3,stride=(temporal_stride, 1, 1),padding_type="replicate"), AttnBlock3D(1152), TemporalAttention(1152), SamePadConv3d(1152,1152,kernel_size=3,stride=(temporal_stride, 1, 1),padding_type="replicate"), ) def forward(self, x): b_,c_,t_,h_,w_=x.shape temporal_encoding = self.temporal_encoding.unsqueeze(0).unsqueeze(-1).unsqueeze(-1) temporal_encoding = temporal_encoding.expand(b_, -1, -1, h_, w_) # (B, T, C, H, W) temporal_encoding = temporal_encoding.permute(0, 2, 1, 3, 4) # (B, C, T, H, W) x = x + temporal_encoding x=self.encoder(x) return x