# coding=utf-8 # Copyright 2023 Mistral AI and the HuggingFace Inc. team. All rights reserved. # # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX # and OPT implementations in this library. It has been modified from its # original forms to accommodate minor architectural differences compared # to GPT-NeoX and OPT used by the Meta AI team that trained the model. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch Mistral model.""" import inspect from dataclasses import dataclass import math import warnings from typing import List, Optional, Tuple, Union import torch import torch.nn.functional as F import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from transformers.activations import ACT2FN from transformers.cache_utils import Cache, DynamicCache from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask, _prepare_4d_causal_attention_mask_for_sdpa from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast from transformers.modeling_utils import PreTrainedModel from transformers.utils import ( add_start_docstrings, add_start_docstrings_to_model_forward, is_flash_attn_2_available, is_flash_attn_greater_or_equal_2_10, logging, replace_return_docstrings, ModelOutput, ) from .mistral_config import CostWiseMistralConfig from transformers.models.mistral.modeling_mistral import ( MistralRMSNorm, MistralRotaryEmbedding, rotate_half, apply_rotary_pos_emb, MistralMLP, repeat_kv, MistralAttention, MistralFlashAttention2, MistralSdpaAttention, MISTRAL_ATTENTION_CLASSES, MistralDecoderLayer, MISTRAL_START_DOCSTRING, MistralPreTrainedModel, MISTRAL_INPUTS_DOCSTRING, ) logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "CostWiseMistralConfig" @dataclass class CostWiseModelOutputWithPast(ModelOutput): last_hidden_state: torch.FloatTensor = None past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None attention_masks: Optional[Tuple[torch.FloatTensor]] = None @dataclass class CostWiseCausalLMOutputWithPast(ModelOutput): loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None attention_masks: Optional[Tuple[torch.FloatTensor]] = None def token_compress(compress_ratio, hidden_states, attention_mask, query_lengths, prompt_lengths, weights: torch.Tensor = None): # hidden_states = hidden_states.to('cpu') # attention_mask = attention_mask.to('cpu') # query_lengths = query_lengths.to('cpu') # prompt_lengths = prompt_lengths.to('cpu') # weights = weights.to('cpu') # get some specific parameters passage_lengths = torch.sum(attention_mask, dim=1, dtype=torch.int) - query_lengths - prompt_lengths # the raw passage lengths retain_passage_lengths = (passage_lengths + compress_ratio - 1) // compress_ratio # the passage lengths need to be retained final_useful_lengths = query_lengths + prompt_lengths + retain_passage_lengths # the final useful length after compress max_passage_length = torch.max(passage_lengths) # the max passage lengths max_final_lengths = torch.max(final_useful_lengths) # the max useful lengths after compress # make new hidden states and new attention masks new_hidden_states = torch.zeros((hidden_states.shape[0], max_final_lengths, hidden_states.shape[-1]), dtype=hidden_states.dtype).to(hidden_states.device) new_attention_mask = torch.ones((hidden_states.shape[0], max_final_lengths), dtype=attention_mask.dtype).to(attention_mask.device) # get new attention mask mask_attention_index = torch.arange(max_final_lengths, device=hidden_states.device).unsqueeze(0) >= final_useful_lengths[:, None] new_attention_mask[mask_attention_index] = 0 # get new hidden states # add query into new hidden states query_index = torch.arange(max_final_lengths, device=hidden_states.device).unsqueeze(0) mask_query_index = query_index < query_lengths[:, None] new_hidden_states[mask_query_index] = hidden_states[:, : max_final_lengths, :][mask_query_index] # add prompt into new hidden states # get the index of the prompt in new hidden states new_prompt_start_length = query_lengths + retain_passage_lengths new_prompt_end_length = new_prompt_start_length + prompt_lengths new_prompt_index = torch.arange(max_final_lengths, device=hidden_states.device).unsqueeze(0) new_mask_prompt_index_start = new_prompt_index >= new_prompt_start_length[:, None] new_mask_prompt_index_end = new_prompt_index < new_prompt_end_length[:, None] new_mask_prompt_index = new_mask_prompt_index_start & new_mask_prompt_index_end # get the index of the prompt in hidden states raw_prompt_start_length = query_lengths + passage_lengths raw_prompt_end_length = raw_prompt_start_length + prompt_lengths raw_prompt_index = torch.arange(hidden_states.shape[1], device=hidden_states.device).unsqueeze(0) raw_mask_prompt_index_start = raw_prompt_index >= raw_prompt_start_length[:, None] raw_mask_prompt_index_end = raw_prompt_index < raw_prompt_end_length[:, None] raw_mask_prompt_index = raw_mask_prompt_index_start & raw_mask_prompt_index_end # replace the prompt hidden states new_hidden_states[new_mask_prompt_index] = hidden_states[raw_mask_prompt_index] # 以上均没问题 # print(new_hidden_states.view(len(new_hidden_states), -1)) # print(new_attention_mask) # get the index of the passage in new hidden states new_passage_start_length = query_lengths new_passage_end_length = new_passage_start_length + retain_passage_lengths new_passage_index = torch.arange(max_final_lengths, device=hidden_states.device).unsqueeze(0) new_mask_passage_index_start = new_passage_index >= new_passage_start_length[:, None] new_mask_passage_index_end = new_passage_index < new_passage_end_length[:, None] new_mask_passage_index = new_mask_passage_index_start & new_mask_passage_index_end # print(query_lengths, prompt_lengths, retain_passage_lengths, final_useful_lengths) # add passage into new hidden states # get mask hidden states psg_start_length = query_lengths psg_end_length = query_lengths + passage_lengths psg_index = torch.arange(hidden_states.shape[1], device=hidden_states.device).unsqueeze(0) mask_psg_index_start = psg_index >= psg_start_length[:, None] mask_psg_index_end = psg_index < psg_end_length[:, None] mask_psg_index = mask_psg_index_start & mask_psg_index_end hidden_states = hidden_states * mask_psg_index.unsqueeze(-1) passage_hidden_states = torch.zeros((hidden_states.shape[0], (max_passage_length + compress_ratio - 1) // compress_ratio * compress_ratio, hidden_states.shape[-1]), dtype=hidden_states.dtype).to(hidden_states.device) passage_end_length = passage_lengths passage_index = torch.arange(passage_hidden_states.shape[1], device=hidden_states.device).unsqueeze(0) # maybe exceed the max passage length mask_passage_index = passage_index < passage_end_length[:, None] raw_passage_end_length = query_lengths + passage_lengths raw_passage_start_length = query_lengths raw_passage_index = torch.arange(hidden_states.shape[1], device=hidden_states.device).unsqueeze(0) raw_mask_passage_index_start = raw_passage_index >= raw_passage_start_length[:, None] raw_mask_passage_index_end = raw_passage_index < raw_passage_end_length[:, None] raw_mask_passage_index = raw_mask_passage_index_start & raw_mask_passage_index_end passage_hidden_states[mask_passage_index] = hidden_states[raw_mask_passage_index] passage_weights = torch.zeros((weights.shape[0], (max_passage_length + compress_ratio - 1) // compress_ratio * compress_ratio) , dtype=weights.dtype).to(hidden_states.device) weights = torch.sum(weights, dim=1) passage_weights[mask_passage_index] = weights[raw_mask_passage_index] passage_weights = passage_weights.view(passage_weights.shape[0], -1, compress_ratio) passage_weights = passage_weights / torch.sum(passage_weights, dim=-1 ).view(passage_weights.shape[0], -1, 1) passage_weights = passage_weights.view(passage_weights.shape[0], -1) # passage_weights = torch.where(passage_weights == torch.nan, 0, passage_weights) passage_hidden_states = passage_hidden_states * passage_weights.unsqueeze(-1) passage_hidden_states = passage_hidden_states.view(passage_hidden_states.shape[0], -1, compress_ratio, passage_hidden_states.shape[-1]) passage_hidden_states = torch.sum(passage_hidden_states, dim=2) passage_end_length = retain_passage_lengths passage_index = torch.arange(passage_hidden_states.shape[1], device=hidden_states.device).unsqueeze(0) mask_passage_index = passage_index < passage_end_length[:, None] new_hidden_states[new_mask_passage_index] = passage_hidden_states[mask_passage_index] return new_hidden_states, new_attention_mask @add_start_docstrings( "The bare Mistral Model outputting raw hidden-states without any specific head on top.", MISTRAL_START_DOCSTRING, ) class CostWiseMistralModel(MistralPreTrainedModel): """ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MistralDecoderLayer`] Args: config: MistralConfig """ def __init__(self, config: CostWiseMistralConfig): super().__init__(config) self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) self.layers = nn.ModuleList( [MistralDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] ) self._attn_implementation = config._attn_implementation self.norm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value): self.embed_tokens = value @add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, compress_layer: Optional[int] = None, compress_ratio: Optional[int] = None, cutoff_layers: Optional[List[int]] = None, query_lengths: Optional[int] = None, prompt_lengths: Optional[int] = None, ) -> Union[Tuple, CostWiseModelOutputWithPast]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions compress_ratio = None if compress_ratio == 1 else compress_ratio if compress_layer is not None and compress_ratio is not None: output_attentions = True output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) if self.config.layer_wise: output_hidden_states = True use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict # retrieve input_ids and inputs_embeds if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") elif input_ids is not None: batch_size, seq_length = input_ids.shape elif inputs_embeds is not None: batch_size, seq_length, _ = inputs_embeds.shape else: raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False if compress_layer is not None and compress_ratio is not None: logger.warning_once( "`use_cache=True` is incompatible with reranker. Setting `use_cache=False`." ) use_cache = False past_key_values_length = 0 if use_cache: use_legacy_cache = not isinstance(past_key_values, Cache) if use_legacy_cache: past_key_values = DynamicCache.from_legacy_cache(past_key_values) past_key_values_length = past_key_values.get_usable_length(seq_length) if position_ids is None: device = input_ids.device if input_ids is not None else inputs_embeds.device position_ids = torch.arange( past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device ) position_ids = position_ids.unsqueeze(0).view(-1, seq_length) else: position_ids = position_ids.view(-1, seq_length).long() if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) if attention_mask is not None and self._attn_implementation == "flash_attention_2" and use_cache: is_padding_right = attention_mask[:, -1].sum().item() != batch_size if is_padding_right: raise ValueError( "You are attempting to perform batched generation with padding_side='right'" " this may lead to unexpected behaviour for Flash Attention version of Mistral. Make sure to " " call `tokenizer.padding_side = 'left'` before tokenizing the input. " ) if self._attn_implementation == "flash_attention_2": # 2d mask is passed through the layers input_attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None elif self._attn_implementation == "sdpa" and not output_attentions: # output_attentions=True can not be supported when using SDPA, and we fall back on # the manual implementation that requires a 4D causal mask in all cases. input_attention_mask = _prepare_4d_causal_attention_mask_for_sdpa( attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length, sliding_window=self.config.sliding_window, ) else: # 4d mask is passed through the layers input_attention_mask = _prepare_4d_causal_attention_mask( attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length, sliding_window=self.config.sliding_window, ) hidden_states = inputs_embeds # decoder layers all_hidden_states = () if output_hidden_states else None all_attention_masks = () all_self_attns = () if output_attentions else None next_decoder_cache = None left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0]) and ( torch.sum(attention_mask) != attention_mask.shape[0] * attention_mask.shape[1]) query_lengths = [0] * hidden_states.shape[0] if query_lengths is None else query_lengths prompt_lengths = [0] * hidden_states.shape[0] if prompt_lengths is None else prompt_lengths if not isinstance(query_lengths, torch.Tensor): query_lengths = torch.tensor(query_lengths, device=hidden_states.device) if not isinstance(prompt_lengths, torch.Tensor): prompt_lengths = torch.tensor(prompt_lengths, device=hidden_states.device) if cutoff_layers is None: max_layer = self.config.num_hidden_layers cutoff_layers = [max_layer] if isinstance(cutoff_layers, int): max_layer = cutoff_layers cutoff_layers = [cutoff_layers] else: max_layer = max(cutoff_layers) for idx, decoder_layer in enumerate(self.layers): if self.config.layer_wise: if idx in cutoff_layers and output_hidden_states: all_hidden_states += (self.norm(hidden_states),) all_attention_masks += (attention_mask,) if idx == max_layer: break elif output_hidden_states: all_hidden_states += (hidden_states,) if compress_layer is not None and compress_ratio is not None and idx in compress_layer and idx != 0: # if all_self_attns is not None: # # weights = all_self_attns[-1][:, :, -1, :] # weights = all_self_attns # else: # weights = None if left_padding: raise ValueError('You must use right padding...') hidden_states, attention_mask = token_compress(compress_ratio, hidden_states, attention_mask, query_lengths, prompt_lengths, all_self_attns) torch.cuda.empty_cache() device = input_ids.device if input_ids is not None else inputs_embeds.device seq_length = hidden_states.shape[1] position_ids = torch.arange( past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device ) position_ids = position_ids.unsqueeze(0) if self._attn_implementation == "flash_attention_2": # 2d mask is passed through the layers input_attention_mask = attention_mask if ( attention_mask is not None and 0 in attention_mask) else None elif self._attn_implementation == "sdpa" and not output_attentions: # output_attentions=True can not be supported when using SDPA, and we fall back on # the manual implementation that requires a 4D causal mask in all cases. input_attention_mask = _prepare_4d_causal_attention_mask_for_sdpa( attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length, ) else: # 4d mask is passed through the layers input_attention_mask = _prepare_4d_causal_attention_mask( attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length ) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( decoder_layer.__call__, hidden_states, input_attention_mask, position_ids, past_key_values, output_attentions, use_cache, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=input_attention_mask, position_ids=position_ids, past_key_value=past_key_values, output_attentions=output_attentions, use_cache=use_cache, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache = layer_outputs[2 if output_attentions else 1] if output_attentions: # all_self_attns += (layer_outputs[1],) all_self_attns = layer_outputs[1][:, :, -1, :] hidden_states = self.norm(hidden_states) # add hidden states from the last decoder layer if not self.config.layer_wise: if output_hidden_states: all_hidden_states += (hidden_states,) all_attention_masks += (attention_mask,) else: if output_hidden_states and self.config.num_hidden_layers == max_layer: all_hidden_states += (hidden_states,) all_attention_masks += (attention_mask,) next_cache = None if use_cache: next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache torch.cuda.empty_cache() if not return_dict: return tuple( v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_attention_masks] if v is not None) return CostWiseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=next_cache, hidden_states=all_hidden_states, attentions=all_self_attns, attention_masks=all_attention_masks ) class CostWiseHead(nn.Module): """Head for sentence-level classification tasks.""" def __init__(self, input_size, output_size): super().__init__() self.linear_head = nn.Linear(input_size, output_size, bias=False) def forward(self, **kwargs): return self.linear_head(**kwargs) class CostWiseMistralForCausalLM(MistralPreTrainedModel): _tied_weights_keys = ["lm_head.weight"] def __init__(self, config): super().__init__(config) self.model = CostWiseMistralModel(config) self.vocab_size = config.vocab_size if not config.layer_wise: self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) else: self.lm_head = nn.ModuleList( [CostWiseHead(config.hidden_size, 1) for _ in range( config.start_layer, config.num_hidden_layers + 1, config.layer_sep )] ) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def set_decoder(self, decoder): self.model = decoder def get_decoder(self): return self.model @add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, compress_layer: Optional[int] = None, compress_ratio: Optional[int] = None, cutoff_layers: Optional[List[int]] = None, query_lengths: Optional[int] = None, prompt_lengths: Optional[int] = None, ) -> Union[Tuple, CostWiseCausalLMOutputWithPast]: r""" Args: labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. Returns: Example: ```python >>> from transformers import AutoTokenizer, MistralForCausalLM >>> model = MistralForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1") >>> tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1") >>> prompt = "Hey, are you conscious? Can you talk to me?" >>> inputs = tokenizer(prompt, return_tensors="pt") >>> # Generate >>> generate_ids = model.generate(inputs.input_ids, max_length=30) >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if compress_ratio is not None and compress_ratio == 1: compress_ratio = None if self.config.layer_wise: if cutoff_layers is None: cutoff_layers = [self.config.num_hidden_layers] elif isinstance(cutoff_layers, int): cutoff_layers = [cutoff_layers] can_use_layers = list(range(self.config.start_layer, self.config.num_hidden_layers + 1, self.config.layer_sep)) remove_layers = [i for i in cutoff_layers if i not in can_use_layers] if len(remove_layers) > 0: logger.warning_once( f"layers {remove_layers} are incompatible with the setting. They will be removed..." ) cutoff_layers = [i for i in cutoff_layers if i not in remove_layers] if len(cutoff_layers) == 0: raise ValueError(f"Your cutoff layers must in [{self.config.start_layer}, {self.config.num_hidden_layers}]") # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, compress_layer=compress_layer, compress_ratio=compress_ratio, query_lengths=query_lengths, prompt_lengths=prompt_lengths, cutoff_layers=cutoff_layers ) if not self.config.layer_wise: hidden_states = outputs[0] logits = self.lm_head(hidden_states) logits = logits.float() loss = None if labels is not None: # Shift so that tokens < n predict n shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = CrossEntropyLoss() shift_logits = shift_logits.view(-1, self.config.vocab_size) shift_labels = shift_labels.view(-1) # Enable model parallelism shift_labels = shift_labels.to(shift_logits.device) loss = loss_fct(shift_logits, shift_labels) else: hidden_states = outputs.hidden_states logits = () for i in range(len(hidden_states)): tmp_logits = self.lm_head[i].linear_head(hidden_states[i]) tmp_logits = tmp_logits.float() tmp_logits = tmp_logits.reshape(hidden_states[i].shape[0], -1) logits = logits + (tmp_logits,) loss = None if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output return CostWiseCausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, attention_masks=outputs[-1] if self.model.config.layer_wise else outputs[-1][-1] ) def prepare_inputs_for_generation( self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs ): # Omit tokens covered by past_key_values if past_key_values is not None: if isinstance(past_key_values, Cache): cache_length = past_key_values.get_seq_length() past_length = past_key_values.seen_tokens max_cache_length = past_key_values.get_max_length() else: cache_length = past_length = past_key_values[0][0].shape[2] max_cache_length = None # Keep only the unprocessed tokens: # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as # input) if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]: input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :] # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard # input_ids based on the past_length. elif past_length < input_ids.shape[1]: input_ids = input_ids[:, past_length:] # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens. # If we are about to go beyond the maximum cache length, we need to crop the input attention mask. if ( max_cache_length is not None and attention_mask is not None and cache_length + input_ids.shape[1] > max_cache_length ): attention_mask = attention_mask[:, -max_cache_length:] position_ids = kwargs.get("position_ids", None) if attention_mask is not None and position_ids is None: # create position_ids on the fly for batch generation position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) if past_key_values: position_ids = position_ids[:, -input_ids.shape[1] :] # if `inputs_embeds` are passed, we only want to use them in the 1st generation step if inputs_embeds is not None and past_key_values is None: model_inputs = {"inputs_embeds": inputs_embeds} else: model_inputs = {"input_ids": input_ids} model_inputs.update( { "position_ids": position_ids, "past_key_values": past_key_values, "use_cache": kwargs.get("use_cache"), "attention_mask": attention_mask, } ) return model_inputs @staticmethod def _reorder_cache(past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: reordered_past += ( tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), ) return reordered_past