Upload folder using huggingface_hub
Browse files- config.json +35 -0
- generation_config.json +6 -0
- mistral_config.py +111 -0
- mistral_model.py +706 -0
- model-00001-of-00006.safetensors +3 -0
- model-00002-of-00006.safetensors +3 -0
- model-00003-of-00006.safetensors +3 -0
- model-00004-of-00006.safetensors +3 -0
- model-00005-of-00006.safetensors +3 -0
- model-00006-of-00006.safetensors +3 -0
- model.safetensors.index.json +326 -0
- special_tokens_map.json +24 -0
- tokenizer.json +0 -0
- tokenizer.model +3 -0
- tokenizer_config.json +43 -0
config.json
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "BAAI/Matroyshka-ReRanker-document",
|
3 |
+
"architectures": [
|
4 |
+
"CostWiseMistralForCausalLM"
|
5 |
+
],
|
6 |
+
"auto_map": {
|
7 |
+
"AutoConfig": "BAAI/Matroyshka-ReRanker-document--mistral_config.CostWiseMistralConfig",
|
8 |
+
"AutoModel": "BAAI/Matroyshka-ReRanker-document--mistral_model.CostWiseMistralModel",
|
9 |
+
"AutoModelForCausalLM": "BAAI/Matroyshka-ReRanker-document--mistral_model.CostWiseMistralForCausalLM"
|
10 |
+
},
|
11 |
+
"attention_dropout": 0.0,
|
12 |
+
"bos_token_id": 1,
|
13 |
+
"eos_token_id": 2,
|
14 |
+
"head_dim": 128,
|
15 |
+
"hidden_act": "silu",
|
16 |
+
"hidden_size": 4096,
|
17 |
+
"initializer_range": 0.02,
|
18 |
+
"intermediate_size": 14336,
|
19 |
+
"layer_sep": 1,
|
20 |
+
"layer_wise": true,
|
21 |
+
"max_position_embeddings": 32768,
|
22 |
+
"model_type": "cost_wise_mistral",
|
23 |
+
"num_attention_heads": 32,
|
24 |
+
"num_hidden_layers": 32,
|
25 |
+
"num_key_value_heads": 8,
|
26 |
+
"rms_norm_eps": 1e-05,
|
27 |
+
"rope_theta": 10000.0,
|
28 |
+
"sliding_window": 4096,
|
29 |
+
"start_layer": 4,
|
30 |
+
"tie_word_embeddings": false,
|
31 |
+
"torch_dtype": "float32",
|
32 |
+
"transformers_version": "4.46.0",
|
33 |
+
"use_cache": true,
|
34 |
+
"vocab_size": 32000
|
35 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"transformers_version": "4.46.0"
|
6 |
+
}
|
mistral_config.py
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 Mistral AI and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Mistral model configuration"""
|
16 |
+
|
17 |
+
from transformers.configuration_utils import PretrainedConfig
|
18 |
+
from transformers.utils import logging
|
19 |
+
from transformers.models.mistral.configuration_mistral import MistralConfig
|
20 |
+
|
21 |
+
logger = logging.get_logger(__name__)
|
22 |
+
|
23 |
+
class CostWiseMistralConfig(MistralConfig):
|
24 |
+
r"""
|
25 |
+
This is the configuration class to store the configuration of a [`MistralModel`]. It is used to instantiate an
|
26 |
+
Mistral model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
27 |
+
with the defaults will yield a similar configuration to that of the Mistral-7B-v0.1 or Mistral-7B-Instruct-v0.1.
|
28 |
+
|
29 |
+
[mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
|
30 |
+
[mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1)
|
31 |
+
|
32 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
33 |
+
documentation from [`PretrainedConfig`] for more information.
|
34 |
+
|
35 |
+
|
36 |
+
Args:
|
37 |
+
vocab_size (`int`, *optional*, defaults to 32000):
|
38 |
+
Vocabulary size of the Mistral model. Defines the number of different tokens that can be represented by the
|
39 |
+
`inputs_ids` passed when calling [`MistralModel`]
|
40 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
41 |
+
Dimension of the hidden representations.
|
42 |
+
intermediate_size (`int`, *optional*, defaults to 14336):
|
43 |
+
Dimension of the MLP representations.
|
44 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
45 |
+
Number of hidden layers in the Transformer encoder.
|
46 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
47 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
48 |
+
num_key_value_heads (`int`, *optional*, defaults to 8):
|
49 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
50 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
51 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
52 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
53 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
54 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`.
|
55 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
56 |
+
The non-linear activation function (function or string) in the decoder.
|
57 |
+
max_position_embeddings (`int`, *optional*, defaults to `4096*32`):
|
58 |
+
The maximum sequence length that this model might ever be used with. Mistral's sliding window attention
|
59 |
+
allows sequence of up to 4096*32 tokens.
|
60 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
61 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
62 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
63 |
+
The epsilon used by the rms normalization layers.
|
64 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
65 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
66 |
+
relevant if `config.is_decoder=True`.
|
67 |
+
pad_token_id (`int`, *optional*):
|
68 |
+
The id of the padding token.
|
69 |
+
bos_token_id (`int`, *optional*, defaults to 1):
|
70 |
+
The id of the "beginning-of-sequence" token.
|
71 |
+
eos_token_id (`int`, *optional*, defaults to 2):
|
72 |
+
The id of the "end-of-sequence" token.
|
73 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
74 |
+
Whether the model's input and output word embeddings should be tied.
|
75 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
76 |
+
The base period of the RoPE embeddings.
|
77 |
+
sliding_window (`int`, *optional*, defaults to 4096):
|
78 |
+
Sliding window attention window size. If not specified, will default to `4096`.
|
79 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
80 |
+
The dropout ratio for the attention probabilities.
|
81 |
+
|
82 |
+
```python
|
83 |
+
>>> from transformers import MistralModel, MistralConfig
|
84 |
+
|
85 |
+
>>> # Initializing a Mistral 7B style configuration
|
86 |
+
>>> configuration = MistralConfig()
|
87 |
+
|
88 |
+
>>> # Initializing a model from the Mistral 7B style configuration
|
89 |
+
>>> model = MistralModel(configuration)
|
90 |
+
|
91 |
+
>>> # Accessing the model configuration
|
92 |
+
>>> configuration = model.config
|
93 |
+
```"""
|
94 |
+
|
95 |
+
model_type = "cost_wise_mistral"
|
96 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
97 |
+
|
98 |
+
def __init__(
|
99 |
+
self,
|
100 |
+
start_layer: int = 18,
|
101 |
+
layer_sep: int = 18,
|
102 |
+
layer_wise: bool = False,
|
103 |
+
**kwargs,
|
104 |
+
):
|
105 |
+
self.start_layer = start_layer
|
106 |
+
self.layer_sep = layer_sep
|
107 |
+
self.layer_wise = layer_wise
|
108 |
+
|
109 |
+
super().__init__(
|
110 |
+
**kwargs,
|
111 |
+
)
|
mistral_model.py
ADDED
@@ -0,0 +1,706 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 Mistral AI and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
5 |
+
# and OPT implementations in this library. It has been modified from its
|
6 |
+
# original forms to accommodate minor architectural differences compared
|
7 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
""" PyTorch Mistral model."""
|
21 |
+
import inspect
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
import math
|
25 |
+
import warnings
|
26 |
+
from typing import List, Optional, Tuple, Union
|
27 |
+
|
28 |
+
import torch
|
29 |
+
import torch.nn.functional as F
|
30 |
+
import torch.utils.checkpoint
|
31 |
+
from torch import nn
|
32 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
33 |
+
|
34 |
+
from transformers.activations import ACT2FN
|
35 |
+
from transformers.cache_utils import Cache, DynamicCache
|
36 |
+
from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask, _prepare_4d_causal_attention_mask_for_sdpa
|
37 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
|
38 |
+
from transformers.modeling_utils import PreTrainedModel
|
39 |
+
from transformers.utils import (
|
40 |
+
add_start_docstrings,
|
41 |
+
add_start_docstrings_to_model_forward,
|
42 |
+
is_flash_attn_2_available,
|
43 |
+
is_flash_attn_greater_or_equal_2_10,
|
44 |
+
logging,
|
45 |
+
replace_return_docstrings, ModelOutput,
|
46 |
+
)
|
47 |
+
from .mistral_config import CostWiseMistralConfig
|
48 |
+
|
49 |
+
from transformers.models.mistral.modeling_mistral import (
|
50 |
+
MistralRMSNorm,
|
51 |
+
MistralRotaryEmbedding,
|
52 |
+
rotate_half,
|
53 |
+
apply_rotary_pos_emb,
|
54 |
+
MistralMLP,
|
55 |
+
repeat_kv,
|
56 |
+
MistralAttention,
|
57 |
+
MistralFlashAttention2,
|
58 |
+
MistralSdpaAttention,
|
59 |
+
MISTRAL_ATTENTION_CLASSES,
|
60 |
+
MistralDecoderLayer,
|
61 |
+
MISTRAL_START_DOCSTRING,
|
62 |
+
MistralPreTrainedModel,
|
63 |
+
MISTRAL_INPUTS_DOCSTRING,
|
64 |
+
|
65 |
+
)
|
66 |
+
|
67 |
+
logger = logging.get_logger(__name__)
|
68 |
+
|
69 |
+
_CONFIG_FOR_DOC = "CostWiseMistralConfig"
|
70 |
+
|
71 |
+
@dataclass
|
72 |
+
class CostWiseModelOutputWithPast(ModelOutput):
|
73 |
+
last_hidden_state: torch.FloatTensor = None
|
74 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
|
75 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
76 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
77 |
+
attention_masks: Optional[Tuple[torch.FloatTensor]] = None
|
78 |
+
|
79 |
+
@dataclass
|
80 |
+
class CostWiseCausalLMOutputWithPast(ModelOutput):
|
81 |
+
loss: Optional[torch.FloatTensor] = None
|
82 |
+
logits: torch.FloatTensor = None
|
83 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
|
84 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
85 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
86 |
+
attention_masks: Optional[Tuple[torch.FloatTensor]] = None
|
87 |
+
|
88 |
+
def token_compress(compress_ratio,
|
89 |
+
hidden_states,
|
90 |
+
attention_mask,
|
91 |
+
query_lengths,
|
92 |
+
prompt_lengths,
|
93 |
+
weights: torch.Tensor = None):
|
94 |
+
# hidden_states = hidden_states.to('cpu')
|
95 |
+
# attention_mask = attention_mask.to('cpu')
|
96 |
+
# query_lengths = query_lengths.to('cpu')
|
97 |
+
# prompt_lengths = prompt_lengths.to('cpu')
|
98 |
+
# weights = weights.to('cpu')
|
99 |
+
# get some specific parameters
|
100 |
+
passage_lengths = torch.sum(attention_mask, dim=1, dtype=torch.int) - query_lengths - prompt_lengths # the raw passage lengths
|
101 |
+
retain_passage_lengths = (passage_lengths + compress_ratio - 1) // compress_ratio # the passage lengths need to be retained
|
102 |
+
final_useful_lengths = query_lengths + prompt_lengths + retain_passage_lengths # the final useful length after compress
|
103 |
+
max_passage_length = torch.max(passage_lengths) # the max passage lengths
|
104 |
+
max_final_lengths = torch.max(final_useful_lengths) # the max useful lengths after compress
|
105 |
+
# make new hidden states and new attention masks
|
106 |
+
new_hidden_states = torch.zeros((hidden_states.shape[0], max_final_lengths,
|
107 |
+
hidden_states.shape[-1]), dtype=hidden_states.dtype).to(hidden_states.device)
|
108 |
+
new_attention_mask = torch.ones((hidden_states.shape[0], max_final_lengths), dtype=attention_mask.dtype).to(attention_mask.device)
|
109 |
+
# get new attention mask
|
110 |
+
mask_attention_index = torch.arange(max_final_lengths, device=hidden_states.device).unsqueeze(0) >= final_useful_lengths[:, None]
|
111 |
+
new_attention_mask[mask_attention_index] = 0
|
112 |
+
# get new hidden states
|
113 |
+
# add query into new hidden states
|
114 |
+
query_index = torch.arange(max_final_lengths, device=hidden_states.device).unsqueeze(0)
|
115 |
+
mask_query_index = query_index < query_lengths[:, None]
|
116 |
+
new_hidden_states[mask_query_index] = hidden_states[:, : max_final_lengths, :][mask_query_index]
|
117 |
+
# add prompt into new hidden states
|
118 |
+
# get the index of the prompt in new hidden states
|
119 |
+
new_prompt_start_length = query_lengths + retain_passage_lengths
|
120 |
+
new_prompt_end_length = new_prompt_start_length + prompt_lengths
|
121 |
+
new_prompt_index = torch.arange(max_final_lengths, device=hidden_states.device).unsqueeze(0)
|
122 |
+
new_mask_prompt_index_start = new_prompt_index >= new_prompt_start_length[:, None]
|
123 |
+
new_mask_prompt_index_end = new_prompt_index < new_prompt_end_length[:, None]
|
124 |
+
new_mask_prompt_index = new_mask_prompt_index_start & new_mask_prompt_index_end
|
125 |
+
# get the index of the prompt in hidden states
|
126 |
+
raw_prompt_start_length = query_lengths + passage_lengths
|
127 |
+
raw_prompt_end_length = raw_prompt_start_length + prompt_lengths
|
128 |
+
raw_prompt_index = torch.arange(hidden_states.shape[1], device=hidden_states.device).unsqueeze(0)
|
129 |
+
raw_mask_prompt_index_start = raw_prompt_index >= raw_prompt_start_length[:, None]
|
130 |
+
raw_mask_prompt_index_end = raw_prompt_index < raw_prompt_end_length[:, None]
|
131 |
+
raw_mask_prompt_index = raw_mask_prompt_index_start & raw_mask_prompt_index_end
|
132 |
+
# replace the prompt hidden states
|
133 |
+
new_hidden_states[new_mask_prompt_index] = hidden_states[raw_mask_prompt_index]
|
134 |
+
# 以上均没问题
|
135 |
+
|
136 |
+
# print(new_hidden_states.view(len(new_hidden_states), -1))
|
137 |
+
# print(new_attention_mask)
|
138 |
+
|
139 |
+
# get the index of the passage in new hidden states
|
140 |
+
new_passage_start_length = query_lengths
|
141 |
+
new_passage_end_length = new_passage_start_length + retain_passage_lengths
|
142 |
+
new_passage_index = torch.arange(max_final_lengths, device=hidden_states.device).unsqueeze(0)
|
143 |
+
new_mask_passage_index_start = new_passage_index >= new_passage_start_length[:, None]
|
144 |
+
new_mask_passage_index_end = new_passage_index < new_passage_end_length[:, None]
|
145 |
+
new_mask_passage_index = new_mask_passage_index_start & new_mask_passage_index_end
|
146 |
+
# print(query_lengths, prompt_lengths, retain_passage_lengths, final_useful_lengths)
|
147 |
+
# add passage into new hidden states
|
148 |
+
# get mask hidden states
|
149 |
+
psg_start_length = query_lengths
|
150 |
+
psg_end_length = query_lengths + passage_lengths
|
151 |
+
psg_index = torch.arange(hidden_states.shape[1], device=hidden_states.device).unsqueeze(0)
|
152 |
+
mask_psg_index_start = psg_index >= psg_start_length[:, None]
|
153 |
+
mask_psg_index_end = psg_index < psg_end_length[:, None]
|
154 |
+
mask_psg_index = mask_psg_index_start & mask_psg_index_end
|
155 |
+
|
156 |
+
hidden_states = hidden_states * mask_psg_index.unsqueeze(-1)
|
157 |
+
passage_hidden_states = torch.zeros((hidden_states.shape[0],
|
158 |
+
(max_passage_length + compress_ratio - 1) // compress_ratio * compress_ratio,
|
159 |
+
hidden_states.shape[-1]), dtype=hidden_states.dtype).to(hidden_states.device)
|
160 |
+
passage_end_length = passage_lengths
|
161 |
+
passage_index = torch.arange(passage_hidden_states.shape[1], device=hidden_states.device).unsqueeze(0) # maybe exceed the max passage length
|
162 |
+
mask_passage_index = passage_index < passage_end_length[:, None]
|
163 |
+
|
164 |
+
raw_passage_end_length = query_lengths + passage_lengths
|
165 |
+
raw_passage_start_length = query_lengths
|
166 |
+
raw_passage_index = torch.arange(hidden_states.shape[1], device=hidden_states.device).unsqueeze(0)
|
167 |
+
raw_mask_passage_index_start = raw_passage_index >= raw_passage_start_length[:, None]
|
168 |
+
raw_mask_passage_index_end = raw_passage_index < raw_passage_end_length[:, None]
|
169 |
+
raw_mask_passage_index = raw_mask_passage_index_start & raw_mask_passage_index_end
|
170 |
+
passage_hidden_states[mask_passage_index] = hidden_states[raw_mask_passage_index]
|
171 |
+
|
172 |
+
passage_weights = torch.zeros((weights.shape[0],
|
173 |
+
(max_passage_length + compress_ratio - 1) // compress_ratio * compress_ratio)
|
174 |
+
, dtype=weights.dtype).to(hidden_states.device)
|
175 |
+
weights = torch.sum(weights, dim=1)
|
176 |
+
passage_weights[mask_passage_index] = weights[raw_mask_passage_index]
|
177 |
+
passage_weights = passage_weights.view(passage_weights.shape[0], -1, compress_ratio)
|
178 |
+
passage_weights = passage_weights / torch.sum(passage_weights, dim=-1
|
179 |
+
).view(passage_weights.shape[0], -1, 1)
|
180 |
+
passage_weights = passage_weights.view(passage_weights.shape[0], -1)
|
181 |
+
# passage_weights = torch.where(passage_weights == torch.nan, 0, passage_weights)
|
182 |
+
passage_hidden_states = passage_hidden_states * passage_weights.unsqueeze(-1)
|
183 |
+
passage_hidden_states = passage_hidden_states.view(passage_hidden_states.shape[0], -1, compress_ratio,
|
184 |
+
passage_hidden_states.shape[-1])
|
185 |
+
passage_hidden_states = torch.sum(passage_hidden_states, dim=2)
|
186 |
+
passage_end_length = retain_passage_lengths
|
187 |
+
passage_index = torch.arange(passage_hidden_states.shape[1], device=hidden_states.device).unsqueeze(0)
|
188 |
+
mask_passage_index = passage_index < passage_end_length[:, None]
|
189 |
+
new_hidden_states[new_mask_passage_index] = passage_hidden_states[mask_passage_index]
|
190 |
+
|
191 |
+
return new_hidden_states, new_attention_mask
|
192 |
+
|
193 |
+
@add_start_docstrings(
|
194 |
+
"The bare Mistral Model outputting raw hidden-states without any specific head on top.",
|
195 |
+
MISTRAL_START_DOCSTRING,
|
196 |
+
)
|
197 |
+
class CostWiseMistralModel(MistralPreTrainedModel):
|
198 |
+
"""
|
199 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MistralDecoderLayer`]
|
200 |
+
|
201 |
+
Args:
|
202 |
+
config: MistralConfig
|
203 |
+
"""
|
204 |
+
|
205 |
+
def __init__(self, config: CostWiseMistralConfig):
|
206 |
+
super().__init__(config)
|
207 |
+
self.padding_idx = config.pad_token_id
|
208 |
+
self.vocab_size = config.vocab_size
|
209 |
+
|
210 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
211 |
+
self.layers = nn.ModuleList(
|
212 |
+
[MistralDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
213 |
+
)
|
214 |
+
self._attn_implementation = config._attn_implementation
|
215 |
+
self.norm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
216 |
+
|
217 |
+
self.gradient_checkpointing = False
|
218 |
+
# Initialize weights and apply final processing
|
219 |
+
self.post_init()
|
220 |
+
|
221 |
+
def get_input_embeddings(self):
|
222 |
+
return self.embed_tokens
|
223 |
+
|
224 |
+
def set_input_embeddings(self, value):
|
225 |
+
self.embed_tokens = value
|
226 |
+
|
227 |
+
@add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING)
|
228 |
+
def forward(
|
229 |
+
self,
|
230 |
+
input_ids: torch.LongTensor = None,
|
231 |
+
attention_mask: Optional[torch.Tensor] = None,
|
232 |
+
position_ids: Optional[torch.LongTensor] = None,
|
233 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
234 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
235 |
+
use_cache: Optional[bool] = None,
|
236 |
+
output_attentions: Optional[bool] = None,
|
237 |
+
output_hidden_states: Optional[bool] = None,
|
238 |
+
return_dict: Optional[bool] = None,
|
239 |
+
compress_layer: Optional[int] = None,
|
240 |
+
compress_ratio: Optional[int] = None,
|
241 |
+
cutoff_layers: Optional[List[int]] = None,
|
242 |
+
query_lengths: Optional[int] = None,
|
243 |
+
prompt_lengths: Optional[int] = None,
|
244 |
+
) -> Union[Tuple, CostWiseModelOutputWithPast]:
|
245 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
246 |
+
|
247 |
+
compress_ratio = None if compress_ratio == 1 else compress_ratio
|
248 |
+
if compress_layer is not None and compress_ratio is not None:
|
249 |
+
output_attentions = True
|
250 |
+
|
251 |
+
output_hidden_states = (
|
252 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
253 |
+
)
|
254 |
+
|
255 |
+
if self.config.layer_wise:
|
256 |
+
output_hidden_states = True
|
257 |
+
|
258 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
259 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
260 |
+
|
261 |
+
# retrieve input_ids and inputs_embeds
|
262 |
+
if input_ids is not None and inputs_embeds is not None:
|
263 |
+
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
264 |
+
elif input_ids is not None:
|
265 |
+
batch_size, seq_length = input_ids.shape
|
266 |
+
elif inputs_embeds is not None:
|
267 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
268 |
+
else:
|
269 |
+
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
270 |
+
|
271 |
+
if self.gradient_checkpointing and self.training:
|
272 |
+
if use_cache:
|
273 |
+
logger.warning_once(
|
274 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
275 |
+
)
|
276 |
+
use_cache = False
|
277 |
+
|
278 |
+
if compress_layer is not None and compress_ratio is not None:
|
279 |
+
logger.warning_once(
|
280 |
+
"`use_cache=True` is incompatible with reranker. Setting `use_cache=False`."
|
281 |
+
)
|
282 |
+
use_cache = False
|
283 |
+
|
284 |
+
past_key_values_length = 0
|
285 |
+
|
286 |
+
if use_cache:
|
287 |
+
use_legacy_cache = not isinstance(past_key_values, Cache)
|
288 |
+
if use_legacy_cache:
|
289 |
+
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
290 |
+
past_key_values_length = past_key_values.get_usable_length(seq_length)
|
291 |
+
|
292 |
+
if position_ids is None:
|
293 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
294 |
+
position_ids = torch.arange(
|
295 |
+
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
296 |
+
)
|
297 |
+
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
298 |
+
else:
|
299 |
+
position_ids = position_ids.view(-1, seq_length).long()
|
300 |
+
|
301 |
+
if inputs_embeds is None:
|
302 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
303 |
+
|
304 |
+
if attention_mask is not None and self._attn_implementation == "flash_attention_2" and use_cache:
|
305 |
+
is_padding_right = attention_mask[:, -1].sum().item() != batch_size
|
306 |
+
if is_padding_right:
|
307 |
+
raise ValueError(
|
308 |
+
"You are attempting to perform batched generation with padding_side='right'"
|
309 |
+
" this may lead to unexpected behaviour for Flash Attention version of Mistral. Make sure to "
|
310 |
+
" call `tokenizer.padding_side = 'left'` before tokenizing the input. "
|
311 |
+
)
|
312 |
+
|
313 |
+
if self._attn_implementation == "flash_attention_2":
|
314 |
+
# 2d mask is passed through the layers
|
315 |
+
input_attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
|
316 |
+
elif self._attn_implementation == "sdpa" and not output_attentions:
|
317 |
+
# output_attentions=True can not be supported when using SDPA, and we fall back on
|
318 |
+
# the manual implementation that requires a 4D causal mask in all cases.
|
319 |
+
input_attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
|
320 |
+
attention_mask,
|
321 |
+
(batch_size, seq_length),
|
322 |
+
inputs_embeds,
|
323 |
+
past_key_values_length,
|
324 |
+
sliding_window=self.config.sliding_window,
|
325 |
+
)
|
326 |
+
else:
|
327 |
+
# 4d mask is passed through the layers
|
328 |
+
input_attention_mask = _prepare_4d_causal_attention_mask(
|
329 |
+
attention_mask,
|
330 |
+
(batch_size, seq_length),
|
331 |
+
inputs_embeds,
|
332 |
+
past_key_values_length,
|
333 |
+
sliding_window=self.config.sliding_window,
|
334 |
+
)
|
335 |
+
|
336 |
+
hidden_states = inputs_embeds
|
337 |
+
|
338 |
+
# decoder layers
|
339 |
+
all_hidden_states = () if output_hidden_states else None
|
340 |
+
all_attention_masks = ()
|
341 |
+
all_self_attns = () if output_attentions else None
|
342 |
+
next_decoder_cache = None
|
343 |
+
|
344 |
+
left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0]) and (
|
345 |
+
torch.sum(attention_mask) != attention_mask.shape[0] * attention_mask.shape[1])
|
346 |
+
query_lengths = [0] * hidden_states.shape[0] if query_lengths is None else query_lengths
|
347 |
+
prompt_lengths = [0] * hidden_states.shape[0] if prompt_lengths is None else prompt_lengths
|
348 |
+
if not isinstance(query_lengths, torch.Tensor):
|
349 |
+
query_lengths = torch.tensor(query_lengths, device=hidden_states.device)
|
350 |
+
if not isinstance(prompt_lengths, torch.Tensor):
|
351 |
+
prompt_lengths = torch.tensor(prompt_lengths, device=hidden_states.device)
|
352 |
+
|
353 |
+
if cutoff_layers is None:
|
354 |
+
max_layer = self.config.num_hidden_layers
|
355 |
+
cutoff_layers = [max_layer]
|
356 |
+
if isinstance(cutoff_layers, int):
|
357 |
+
max_layer = cutoff_layers
|
358 |
+
cutoff_layers = [cutoff_layers]
|
359 |
+
else:
|
360 |
+
max_layer = max(cutoff_layers)
|
361 |
+
|
362 |
+
for idx, decoder_layer in enumerate(self.layers):
|
363 |
+
if self.config.layer_wise:
|
364 |
+
if idx in cutoff_layers and output_hidden_states:
|
365 |
+
all_hidden_states += (self.norm(hidden_states),)
|
366 |
+
all_attention_masks += (attention_mask,)
|
367 |
+
if idx == max_layer:
|
368 |
+
break
|
369 |
+
elif output_hidden_states:
|
370 |
+
all_hidden_states += (hidden_states,)
|
371 |
+
|
372 |
+
if compress_layer is not None and compress_ratio is not None and idx in compress_layer and idx != 0:
|
373 |
+
# if all_self_attns is not None:
|
374 |
+
# # weights = all_self_attns[-1][:, :, -1, :]
|
375 |
+
# weights = all_self_attns
|
376 |
+
# else:
|
377 |
+
# weights = None
|
378 |
+
|
379 |
+
if left_padding:
|
380 |
+
raise ValueError('You must use right padding...')
|
381 |
+
hidden_states, attention_mask = token_compress(compress_ratio, hidden_states, attention_mask,
|
382 |
+
query_lengths, prompt_lengths, all_self_attns)
|
383 |
+
torch.cuda.empty_cache()
|
384 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
385 |
+
seq_length = hidden_states.shape[1]
|
386 |
+
position_ids = torch.arange(
|
387 |
+
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
388 |
+
)
|
389 |
+
position_ids = position_ids.unsqueeze(0)
|
390 |
+
if self._attn_implementation == "flash_attention_2":
|
391 |
+
# 2d mask is passed through the layers
|
392 |
+
input_attention_mask = attention_mask if (
|
393 |
+
attention_mask is not None and 0 in attention_mask) else None
|
394 |
+
elif self._attn_implementation == "sdpa" and not output_attentions:
|
395 |
+
# output_attentions=True can not be supported when using SDPA, and we fall back on
|
396 |
+
# the manual implementation that requires a 4D causal mask in all cases.
|
397 |
+
input_attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
|
398 |
+
attention_mask,
|
399 |
+
(batch_size, seq_length),
|
400 |
+
inputs_embeds,
|
401 |
+
past_key_values_length,
|
402 |
+
)
|
403 |
+
else:
|
404 |
+
# 4d mask is passed through the layers
|
405 |
+
input_attention_mask = _prepare_4d_causal_attention_mask(
|
406 |
+
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
|
407 |
+
)
|
408 |
+
|
409 |
+
if self.gradient_checkpointing and self.training:
|
410 |
+
layer_outputs = self._gradient_checkpointing_func(
|
411 |
+
decoder_layer.__call__,
|
412 |
+
hidden_states,
|
413 |
+
input_attention_mask,
|
414 |
+
position_ids,
|
415 |
+
past_key_values,
|
416 |
+
output_attentions,
|
417 |
+
use_cache,
|
418 |
+
)
|
419 |
+
else:
|
420 |
+
layer_outputs = decoder_layer(
|
421 |
+
hidden_states,
|
422 |
+
attention_mask=input_attention_mask,
|
423 |
+
position_ids=position_ids,
|
424 |
+
past_key_value=past_key_values,
|
425 |
+
output_attentions=output_attentions,
|
426 |
+
use_cache=use_cache,
|
427 |
+
)
|
428 |
+
|
429 |
+
hidden_states = layer_outputs[0]
|
430 |
+
|
431 |
+
if use_cache:
|
432 |
+
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
433 |
+
|
434 |
+
if output_attentions:
|
435 |
+
# all_self_attns += (layer_outputs[1],)
|
436 |
+
all_self_attns = layer_outputs[1][:, :, -1, :]
|
437 |
+
|
438 |
+
hidden_states = self.norm(hidden_states)
|
439 |
+
|
440 |
+
# add hidden states from the last decoder layer
|
441 |
+
if not self.config.layer_wise:
|
442 |
+
if output_hidden_states:
|
443 |
+
all_hidden_states += (hidden_states,)
|
444 |
+
all_attention_masks += (attention_mask,)
|
445 |
+
else:
|
446 |
+
if output_hidden_states and self.config.num_hidden_layers == max_layer:
|
447 |
+
all_hidden_states += (hidden_states,)
|
448 |
+
all_attention_masks += (attention_mask,)
|
449 |
+
|
450 |
+
next_cache = None
|
451 |
+
if use_cache:
|
452 |
+
next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
|
453 |
+
|
454 |
+
torch.cuda.empty_cache()
|
455 |
+
|
456 |
+
if not return_dict:
|
457 |
+
return tuple(
|
458 |
+
v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_attention_masks] if
|
459 |
+
v is not None)
|
460 |
+
return CostWiseModelOutputWithPast(
|
461 |
+
last_hidden_state=hidden_states,
|
462 |
+
past_key_values=next_cache,
|
463 |
+
hidden_states=all_hidden_states,
|
464 |
+
attentions=all_self_attns,
|
465 |
+
attention_masks=all_attention_masks
|
466 |
+
)
|
467 |
+
|
468 |
+
class CostWiseHead(nn.Module):
|
469 |
+
"""Head for sentence-level classification tasks."""
|
470 |
+
|
471 |
+
def __init__(self, input_size, output_size):
|
472 |
+
super().__init__()
|
473 |
+
self.linear_head = nn.Linear(input_size, output_size, bias=False)
|
474 |
+
|
475 |
+
def forward(self, **kwargs):
|
476 |
+
return self.linear_head(**kwargs)
|
477 |
+
|
478 |
+
class CostWiseMistralForCausalLM(MistralPreTrainedModel):
|
479 |
+
_tied_weights_keys = ["lm_head.weight"]
|
480 |
+
|
481 |
+
def __init__(self, config):
|
482 |
+
super().__init__(config)
|
483 |
+
self.model = CostWiseMistralModel(config)
|
484 |
+
self.vocab_size = config.vocab_size
|
485 |
+
if not config.layer_wise:
|
486 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
487 |
+
else:
|
488 |
+
self.lm_head = nn.ModuleList(
|
489 |
+
[CostWiseHead(config.hidden_size, 1) for _ in range(
|
490 |
+
config.start_layer, config.num_hidden_layers + 1, config.layer_sep
|
491 |
+
)]
|
492 |
+
)
|
493 |
+
|
494 |
+
# Initialize weights and apply final processing
|
495 |
+
self.post_init()
|
496 |
+
|
497 |
+
def get_input_embeddings(self):
|
498 |
+
return self.model.embed_tokens
|
499 |
+
|
500 |
+
def set_input_embeddings(self, value):
|
501 |
+
self.model.embed_tokens = value
|
502 |
+
|
503 |
+
def get_output_embeddings(self):
|
504 |
+
return self.lm_head
|
505 |
+
|
506 |
+
def set_output_embeddings(self, new_embeddings):
|
507 |
+
self.lm_head = new_embeddings
|
508 |
+
|
509 |
+
def set_decoder(self, decoder):
|
510 |
+
self.model = decoder
|
511 |
+
|
512 |
+
def get_decoder(self):
|
513 |
+
return self.model
|
514 |
+
|
515 |
+
@add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING)
|
516 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
517 |
+
def forward(
|
518 |
+
self,
|
519 |
+
input_ids: torch.LongTensor = None,
|
520 |
+
attention_mask: Optional[torch.Tensor] = None,
|
521 |
+
position_ids: Optional[torch.LongTensor] = None,
|
522 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
523 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
524 |
+
labels: Optional[torch.LongTensor] = None,
|
525 |
+
use_cache: Optional[bool] = None,
|
526 |
+
output_attentions: Optional[bool] = None,
|
527 |
+
output_hidden_states: Optional[bool] = None,
|
528 |
+
return_dict: Optional[bool] = None,
|
529 |
+
compress_layer: Optional[int] = None,
|
530 |
+
compress_ratio: Optional[int] = None,
|
531 |
+
cutoff_layers: Optional[List[int]] = None,
|
532 |
+
query_lengths: Optional[int] = None,
|
533 |
+
prompt_lengths: Optional[int] = None,
|
534 |
+
) -> Union[Tuple, CostWiseCausalLMOutputWithPast]:
|
535 |
+
r"""
|
536 |
+
Args:
|
537 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
538 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
539 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
540 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
541 |
+
|
542 |
+
Returns:
|
543 |
+
|
544 |
+
Example:
|
545 |
+
|
546 |
+
```python
|
547 |
+
>>> from transformers import AutoTokenizer, MistralForCausalLM
|
548 |
+
|
549 |
+
>>> model = MistralForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1")
|
550 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1")
|
551 |
+
|
552 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
553 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
554 |
+
|
555 |
+
>>> # Generate
|
556 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
557 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
558 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
559 |
+
```"""
|
560 |
+
|
561 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
562 |
+
output_hidden_states = (
|
563 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
564 |
+
)
|
565 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
566 |
+
|
567 |
+
if compress_ratio is not None and compress_ratio == 1:
|
568 |
+
compress_ratio = None
|
569 |
+
|
570 |
+
if self.config.layer_wise:
|
571 |
+
if cutoff_layers is None:
|
572 |
+
cutoff_layers = [self.config.num_hidden_layers]
|
573 |
+
elif isinstance(cutoff_layers, int):
|
574 |
+
cutoff_layers = [cutoff_layers]
|
575 |
+
can_use_layers = list(range(self.config.start_layer, self.config.num_hidden_layers + 1, self.config.layer_sep))
|
576 |
+
remove_layers = [i for i in cutoff_layers if i not in can_use_layers]
|
577 |
+
if len(remove_layers) > 0:
|
578 |
+
logger.warning_once(
|
579 |
+
f"layers {remove_layers} are incompatible with the setting. They will be removed..."
|
580 |
+
)
|
581 |
+
cutoff_layers = [i for i in cutoff_layers if i not in remove_layers]
|
582 |
+
if len(cutoff_layers) == 0:
|
583 |
+
raise ValueError(f"Your cutoff layers must in [{self.config.start_layer}, {self.config.num_hidden_layers}]")
|
584 |
+
|
585 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
586 |
+
outputs = self.model(
|
587 |
+
input_ids=input_ids,
|
588 |
+
attention_mask=attention_mask,
|
589 |
+
position_ids=position_ids,
|
590 |
+
past_key_values=past_key_values,
|
591 |
+
inputs_embeds=inputs_embeds,
|
592 |
+
use_cache=use_cache,
|
593 |
+
output_attentions=output_attentions,
|
594 |
+
output_hidden_states=output_hidden_states,
|
595 |
+
return_dict=return_dict,
|
596 |
+
compress_layer=compress_layer,
|
597 |
+
compress_ratio=compress_ratio,
|
598 |
+
query_lengths=query_lengths,
|
599 |
+
prompt_lengths=prompt_lengths,
|
600 |
+
cutoff_layers=cutoff_layers
|
601 |
+
)
|
602 |
+
|
603 |
+
if not self.config.layer_wise:
|
604 |
+
hidden_states = outputs[0]
|
605 |
+
logits = self.lm_head(hidden_states)
|
606 |
+
logits = logits.float()
|
607 |
+
loss = None
|
608 |
+
if labels is not None:
|
609 |
+
# Shift so that tokens < n predict n
|
610 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
611 |
+
shift_labels = labels[..., 1:].contiguous()
|
612 |
+
# Flatten the tokens
|
613 |
+
loss_fct = CrossEntropyLoss()
|
614 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
615 |
+
shift_labels = shift_labels.view(-1)
|
616 |
+
# Enable model parallelism
|
617 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
618 |
+
loss = loss_fct(shift_logits, shift_labels)
|
619 |
+
else:
|
620 |
+
hidden_states = outputs.hidden_states
|
621 |
+
logits = ()
|
622 |
+
for i in range(len(hidden_states)):
|
623 |
+
tmp_logits = self.lm_head[i].linear_head(hidden_states[i])
|
624 |
+
tmp_logits = tmp_logits.float()
|
625 |
+
tmp_logits = tmp_logits.reshape(hidden_states[i].shape[0], -1)
|
626 |
+
logits = logits + (tmp_logits,)
|
627 |
+
loss = None
|
628 |
+
|
629 |
+
if not return_dict:
|
630 |
+
output = (logits,) + outputs[1:]
|
631 |
+
return (loss,) + output if loss is not None else output
|
632 |
+
|
633 |
+
return CostWiseCausalLMOutputWithPast(
|
634 |
+
loss=loss,
|
635 |
+
logits=logits,
|
636 |
+
past_key_values=outputs.past_key_values,
|
637 |
+
hidden_states=outputs.hidden_states,
|
638 |
+
attentions=outputs.attentions,
|
639 |
+
attention_masks=outputs[-1] if self.model.config.layer_wise else outputs[-1][-1]
|
640 |
+
)
|
641 |
+
|
642 |
+
def prepare_inputs_for_generation(
|
643 |
+
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
644 |
+
):
|
645 |
+
# Omit tokens covered by past_key_values
|
646 |
+
if past_key_values is not None:
|
647 |
+
if isinstance(past_key_values, Cache):
|
648 |
+
cache_length = past_key_values.get_seq_length()
|
649 |
+
past_length = past_key_values.seen_tokens
|
650 |
+
max_cache_length = past_key_values.get_max_length()
|
651 |
+
else:
|
652 |
+
cache_length = past_length = past_key_values[0][0].shape[2]
|
653 |
+
max_cache_length = None
|
654 |
+
|
655 |
+
# Keep only the unprocessed tokens:
|
656 |
+
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
657 |
+
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
|
658 |
+
# input)
|
659 |
+
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
660 |
+
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
661 |
+
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
662 |
+
# input_ids based on the past_length.
|
663 |
+
elif past_length < input_ids.shape[1]:
|
664 |
+
input_ids = input_ids[:, past_length:]
|
665 |
+
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
|
666 |
+
|
667 |
+
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
|
668 |
+
if (
|
669 |
+
max_cache_length is not None
|
670 |
+
and attention_mask is not None
|
671 |
+
and cache_length + input_ids.shape[1] > max_cache_length
|
672 |
+
):
|
673 |
+
attention_mask = attention_mask[:, -max_cache_length:]
|
674 |
+
|
675 |
+
position_ids = kwargs.get("position_ids", None)
|
676 |
+
if attention_mask is not None and position_ids is None:
|
677 |
+
# create position_ids on the fly for batch generation
|
678 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
679 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
680 |
+
if past_key_values:
|
681 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
682 |
+
|
683 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
684 |
+
if inputs_embeds is not None and past_key_values is None:
|
685 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
686 |
+
else:
|
687 |
+
model_inputs = {"input_ids": input_ids}
|
688 |
+
|
689 |
+
model_inputs.update(
|
690 |
+
{
|
691 |
+
"position_ids": position_ids,
|
692 |
+
"past_key_values": past_key_values,
|
693 |
+
"use_cache": kwargs.get("use_cache"),
|
694 |
+
"attention_mask": attention_mask,
|
695 |
+
}
|
696 |
+
)
|
697 |
+
return model_inputs
|
698 |
+
|
699 |
+
@staticmethod
|
700 |
+
def _reorder_cache(past_key_values, beam_idx):
|
701 |
+
reordered_past = ()
|
702 |
+
for layer_past in past_key_values:
|
703 |
+
reordered_past += (
|
704 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
705 |
+
)
|
706 |
+
return reordered_past
|
model-00001-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4754bece3b0299c14a2d361b81de3591d2f49ba0f68fbc0f5e1eac8549ed829f
|
3 |
+
size 4987196936
|
model-00002-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5e867fc5dd3e522a17ea4c39009950f93720171409f12e18aeec2b4ae4cbeb85
|
3 |
+
size 4899116440
|
model-00003-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1ba0ba3a4f6a6ae7997c79cd9103208ce2ddb83cc9a45b2555309f434330eff3
|
3 |
+
size 4999813120
|
model-00004-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:350f054112733d572854a0c72425330f87bbf8329c238497ae7fc4248db7965e
|
3 |
+
size 4999813128
|
model-00005-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:07b574afe44404b5ab28082f39d6943a9601a949b8e3391951b33d4c35b3b2a8
|
3 |
+
size 4832007496
|
model-00006-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:46a074ec71141fa65ae3536fa24d47a777fc99dd7b40bd56e0a59c53f3f44fa3
|
3 |
+
size 3725204688
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,326 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 28443115520
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.0.linear_head.weight": "model-00006-of-00006.safetensors",
|
7 |
+
"lm_head.1.linear_head.weight": "model-00006-of-00006.safetensors",
|
8 |
+
"lm_head.10.linear_head.weight": "model-00006-of-00006.safetensors",
|
9 |
+
"lm_head.11.linear_head.weight": "model-00006-of-00006.safetensors",
|
10 |
+
"lm_head.12.linear_head.weight": "model-00006-of-00006.safetensors",
|
11 |
+
"lm_head.13.linear_head.weight": "model-00006-of-00006.safetensors",
|
12 |
+
"lm_head.14.linear_head.weight": "model-00006-of-00006.safetensors",
|
13 |
+
"lm_head.15.linear_head.weight": "model-00006-of-00006.safetensors",
|
14 |
+
"lm_head.16.linear_head.weight": "model-00006-of-00006.safetensors",
|
15 |
+
"lm_head.17.linear_head.weight": "model-00006-of-00006.safetensors",
|
16 |
+
"lm_head.18.linear_head.weight": "model-00006-of-00006.safetensors",
|
17 |
+
"lm_head.19.linear_head.weight": "model-00006-of-00006.safetensors",
|
18 |
+
"lm_head.2.linear_head.weight": "model-00006-of-00006.safetensors",
|
19 |
+
"lm_head.20.linear_head.weight": "model-00006-of-00006.safetensors",
|
20 |
+
"lm_head.21.linear_head.weight": "model-00006-of-00006.safetensors",
|
21 |
+
"lm_head.22.linear_head.weight": "model-00006-of-00006.safetensors",
|
22 |
+
"lm_head.23.linear_head.weight": "model-00006-of-00006.safetensors",
|
23 |
+
"lm_head.24.linear_head.weight": "model-00006-of-00006.safetensors",
|
24 |
+
"lm_head.25.linear_head.weight": "model-00006-of-00006.safetensors",
|
25 |
+
"lm_head.26.linear_head.weight": "model-00006-of-00006.safetensors",
|
26 |
+
"lm_head.27.linear_head.weight": "model-00006-of-00006.safetensors",
|
27 |
+
"lm_head.28.linear_head.weight": "model-00006-of-00006.safetensors",
|
28 |
+
"lm_head.3.linear_head.weight": "model-00006-of-00006.safetensors",
|
29 |
+
"lm_head.4.linear_head.weight": "model-00006-of-00006.safetensors",
|
30 |
+
"lm_head.5.linear_head.weight": "model-00006-of-00006.safetensors",
|
31 |
+
"lm_head.6.linear_head.weight": "model-00006-of-00006.safetensors",
|
32 |
+
"lm_head.7.linear_head.weight": "model-00006-of-00006.safetensors",
|
33 |
+
"lm_head.8.linear_head.weight": "model-00006-of-00006.safetensors",
|
34 |
+
"lm_head.9.linear_head.weight": "model-00006-of-00006.safetensors",
|
35 |
+
"model.embed_tokens.weight": "model-00001-of-00006.safetensors",
|
36 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
37 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
38 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
39 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
40 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
41 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
42 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
43 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
44 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
45 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
46 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
47 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
48 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
49 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
50 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
51 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
52 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
53 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
54 |
+
"model.layers.10.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
55 |
+
"model.layers.10.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
56 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
57 |
+
"model.layers.10.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
58 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
59 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
60 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
61 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
62 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
63 |
+
"model.layers.11.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
64 |
+
"model.layers.11.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
65 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
66 |
+
"model.layers.11.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
67 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
68 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
69 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
70 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
71 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
72 |
+
"model.layers.12.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
73 |
+
"model.layers.12.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
74 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
75 |
+
"model.layers.12.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
76 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
77 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
78 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
79 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
80 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
81 |
+
"model.layers.13.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
82 |
+
"model.layers.13.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
83 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
84 |
+
"model.layers.13.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
85 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
86 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
87 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
88 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
89 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
90 |
+
"model.layers.14.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
91 |
+
"model.layers.14.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
92 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
93 |
+
"model.layers.14.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
94 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
95 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
96 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
97 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
98 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
99 |
+
"model.layers.15.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
100 |
+
"model.layers.15.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
101 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
102 |
+
"model.layers.15.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
103 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
104 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
105 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
106 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
107 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
108 |
+
"model.layers.16.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
109 |
+
"model.layers.16.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
110 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
111 |
+
"model.layers.16.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
112 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
113 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
114 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
115 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
116 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
117 |
+
"model.layers.17.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
118 |
+
"model.layers.17.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
119 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
120 |
+
"model.layers.17.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
121 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
122 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
123 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
124 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
125 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
126 |
+
"model.layers.18.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
127 |
+
"model.layers.18.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
128 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
129 |
+
"model.layers.18.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
130 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
131 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
132 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
133 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
134 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
135 |
+
"model.layers.19.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
136 |
+
"model.layers.19.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
137 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
138 |
+
"model.layers.19.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
139 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
140 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
141 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
142 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
143 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
144 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
145 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
146 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
147 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
148 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
149 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
150 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
151 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
152 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
153 |
+
"model.layers.20.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
154 |
+
"model.layers.20.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
155 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
156 |
+
"model.layers.20.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
157 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
158 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
159 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
160 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
161 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
162 |
+
"model.layers.21.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
163 |
+
"model.layers.21.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
164 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
165 |
+
"model.layers.21.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
166 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
167 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
168 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
169 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
170 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
171 |
+
"model.layers.22.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
172 |
+
"model.layers.22.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
173 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
174 |
+
"model.layers.22.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
175 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
176 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
177 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
178 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
179 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
180 |
+
"model.layers.23.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
181 |
+
"model.layers.23.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
182 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
183 |
+
"model.layers.23.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
184 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
185 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
186 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
187 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
188 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
189 |
+
"model.layers.24.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
190 |
+
"model.layers.24.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
191 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
192 |
+
"model.layers.24.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
193 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
194 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
195 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
196 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
197 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
198 |
+
"model.layers.25.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
199 |
+
"model.layers.25.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
200 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
201 |
+
"model.layers.25.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
202 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
203 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
204 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
205 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
206 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
207 |
+
"model.layers.26.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
208 |
+
"model.layers.26.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
209 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
210 |
+
"model.layers.26.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
211 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
212 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
213 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
214 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
215 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
216 |
+
"model.layers.27.input_layernorm.weight": "model-00006-of-00006.safetensors",
|
217 |
+
"model.layers.27.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
|
218 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
219 |
+
"model.layers.27.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
220 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
|
221 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
222 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
223 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
224 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
225 |
+
"model.layers.28.input_layernorm.weight": "model-00006-of-00006.safetensors",
|
226 |
+
"model.layers.28.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
|
227 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
|
228 |
+
"model.layers.28.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
|
229 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
|
230 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
|
231 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
|
232 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
|
233 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
|
234 |
+
"model.layers.29.input_layernorm.weight": "model-00006-of-00006.safetensors",
|
235 |
+
"model.layers.29.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
|
236 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
|
237 |
+
"model.layers.29.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
|
238 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
|
239 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
|
240 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
|
241 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
|
242 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
|
243 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
244 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
245 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
246 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
247 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
248 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
249 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
250 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
251 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
252 |
+
"model.layers.30.input_layernorm.weight": "model-00006-of-00006.safetensors",
|
253 |
+
"model.layers.30.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
|
254 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
|
255 |
+
"model.layers.30.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
|
256 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
|
257 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
|
258 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
|
259 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
|
260 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
|
261 |
+
"model.layers.31.input_layernorm.weight": "model-00006-of-00006.safetensors",
|
262 |
+
"model.layers.31.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
|
263 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
|
264 |
+
"model.layers.31.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
|
265 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
|
266 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
|
267 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
|
268 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
|
269 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
|
270 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
271 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
272 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
273 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
274 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
275 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
276 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
277 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
278 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
279 |
+
"model.layers.5.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
280 |
+
"model.layers.5.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
281 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
282 |
+
"model.layers.5.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
283 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
284 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
285 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
286 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
287 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
288 |
+
"model.layers.6.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
289 |
+
"model.layers.6.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
290 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
291 |
+
"model.layers.6.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
292 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
293 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
294 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
295 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
296 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
297 |
+
"model.layers.7.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
298 |
+
"model.layers.7.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
299 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
300 |
+
"model.layers.7.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
301 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
302 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
303 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
304 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
305 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
306 |
+
"model.layers.8.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
307 |
+
"model.layers.8.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
308 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
309 |
+
"model.layers.8.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
310 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
311 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
312 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
313 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
314 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
315 |
+
"model.layers.9.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
316 |
+
"model.layers.9.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
317 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
318 |
+
"model.layers.9.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
319 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
320 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
321 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
322 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
323 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
324 |
+
"model.norm.weight": "model-00006-of-00006.safetensors"
|
325 |
+
}
|
326 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": "<unk>",
|
17 |
+
"unk_token": {
|
18 |
+
"content": "<unk>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
}
|
24 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
|
3 |
+
size 493443
|
tokenizer_config.json
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"add_prefix_space": null,
|
5 |
+
"added_tokens_decoder": {
|
6 |
+
"0": {
|
7 |
+
"content": "<unk>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false,
|
12 |
+
"special": true
|
13 |
+
},
|
14 |
+
"1": {
|
15 |
+
"content": "<s>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": false,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false,
|
20 |
+
"special": true
|
21 |
+
},
|
22 |
+
"2": {
|
23 |
+
"content": "</s>",
|
24 |
+
"lstrip": false,
|
25 |
+
"normalized": false,
|
26 |
+
"rstrip": false,
|
27 |
+
"single_word": false,
|
28 |
+
"special": true
|
29 |
+
}
|
30 |
+
},
|
31 |
+
"additional_special_tokens": [],
|
32 |
+
"bos_token": "<s>",
|
33 |
+
"clean_up_tokenization_spaces": false,
|
34 |
+
"eos_token": "</s>",
|
35 |
+
"legacy": true,
|
36 |
+
"model_max_length": 1000000000000000019884624838656,
|
37 |
+
"pad_token": "<unk>",
|
38 |
+
"sp_model_kwargs": {},
|
39 |
+
"spaces_between_special_tokens": false,
|
40 |
+
"tokenizer_class": "LlamaTokenizer",
|
41 |
+
"unk_token": "<unk>",
|
42 |
+
"use_default_system_prompt": false
|
43 |
+
}
|