Matroyshka-ReRanker-beir / mistral_model.py
cfli's picture
Upload folder using huggingface_hub
b413731 verified
# coding=utf-8
# Copyright 2023 Mistral AI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch Mistral model."""
import inspect
from dataclasses import dataclass
import math
import warnings
from typing import List, Optional, Tuple, Union
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from transformers.activations import ACT2FN
from transformers.cache_utils import Cache, DynamicCache
from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask, _prepare_4d_causal_attention_mask_for_sdpa
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import (
add_start_docstrings,
add_start_docstrings_to_model_forward,
is_flash_attn_2_available,
is_flash_attn_greater_or_equal_2_10,
logging,
replace_return_docstrings, ModelOutput,
)
from .mistral_config import CostWiseMistralConfig
from transformers.models.mistral.modeling_mistral import (
MistralRMSNorm,
MistralRotaryEmbedding,
rotate_half,
apply_rotary_pos_emb,
MistralMLP,
repeat_kv,
MistralAttention,
MistralFlashAttention2,
MistralSdpaAttention,
MISTRAL_ATTENTION_CLASSES,
MistralDecoderLayer,
MISTRAL_START_DOCSTRING,
MistralPreTrainedModel,
MISTRAL_INPUTS_DOCSTRING,
)
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "CostWiseMistralConfig"
@dataclass
class CostWiseModelOutputWithPast(ModelOutput):
last_hidden_state: torch.FloatTensor = None
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
attention_masks: Optional[Tuple[torch.FloatTensor]] = None
@dataclass
class CostWiseCausalLMOutputWithPast(ModelOutput):
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
attention_masks: Optional[Tuple[torch.FloatTensor]] = None
def token_compress(compress_ratio,
hidden_states,
attention_mask,
query_lengths,
prompt_lengths,
weights: torch.Tensor = None):
# hidden_states = hidden_states.to('cpu')
# attention_mask = attention_mask.to('cpu')
# query_lengths = query_lengths.to('cpu')
# prompt_lengths = prompt_lengths.to('cpu')
# weights = weights.to('cpu')
# get some specific parameters
passage_lengths = torch.sum(attention_mask, dim=1, dtype=torch.int) - query_lengths - prompt_lengths # the raw passage lengths
retain_passage_lengths = (passage_lengths + compress_ratio - 1) // compress_ratio # the passage lengths need to be retained
final_useful_lengths = query_lengths + prompt_lengths + retain_passage_lengths # the final useful length after compress
max_passage_length = torch.max(passage_lengths) # the max passage lengths
max_final_lengths = torch.max(final_useful_lengths) # the max useful lengths after compress
# make new hidden states and new attention masks
new_hidden_states = torch.zeros((hidden_states.shape[0], max_final_lengths,
hidden_states.shape[-1]), dtype=hidden_states.dtype).to(hidden_states.device)
new_attention_mask = torch.ones((hidden_states.shape[0], max_final_lengths), dtype=attention_mask.dtype).to(attention_mask.device)
# get new attention mask
mask_attention_index = torch.arange(max_final_lengths, device=hidden_states.device).unsqueeze(0) >= final_useful_lengths[:, None]
new_attention_mask[mask_attention_index] = 0
# get new hidden states
# add query into new hidden states
query_index = torch.arange(max_final_lengths, device=hidden_states.device).unsqueeze(0)
mask_query_index = query_index < query_lengths[:, None]
new_hidden_states[mask_query_index] = hidden_states[:, : max_final_lengths, :][mask_query_index]
# add prompt into new hidden states
# get the index of the prompt in new hidden states
new_prompt_start_length = query_lengths + retain_passage_lengths
new_prompt_end_length = new_prompt_start_length + prompt_lengths
new_prompt_index = torch.arange(max_final_lengths, device=hidden_states.device).unsqueeze(0)
new_mask_prompt_index_start = new_prompt_index >= new_prompt_start_length[:, None]
new_mask_prompt_index_end = new_prompt_index < new_prompt_end_length[:, None]
new_mask_prompt_index = new_mask_prompt_index_start & new_mask_prompt_index_end
# get the index of the prompt in hidden states
raw_prompt_start_length = query_lengths + passage_lengths
raw_prompt_end_length = raw_prompt_start_length + prompt_lengths
raw_prompt_index = torch.arange(hidden_states.shape[1], device=hidden_states.device).unsqueeze(0)
raw_mask_prompt_index_start = raw_prompt_index >= raw_prompt_start_length[:, None]
raw_mask_prompt_index_end = raw_prompt_index < raw_prompt_end_length[:, None]
raw_mask_prompt_index = raw_mask_prompt_index_start & raw_mask_prompt_index_end
# replace the prompt hidden states
new_hidden_states[new_mask_prompt_index] = hidden_states[raw_mask_prompt_index]
# 以上均没问题
# print(new_hidden_states.view(len(new_hidden_states), -1))
# print(new_attention_mask)
# get the index of the passage in new hidden states
new_passage_start_length = query_lengths
new_passage_end_length = new_passage_start_length + retain_passage_lengths
new_passage_index = torch.arange(max_final_lengths, device=hidden_states.device).unsqueeze(0)
new_mask_passage_index_start = new_passage_index >= new_passage_start_length[:, None]
new_mask_passage_index_end = new_passage_index < new_passage_end_length[:, None]
new_mask_passage_index = new_mask_passage_index_start & new_mask_passage_index_end
# print(query_lengths, prompt_lengths, retain_passage_lengths, final_useful_lengths)
# add passage into new hidden states
# get mask hidden states
psg_start_length = query_lengths
psg_end_length = query_lengths + passage_lengths
psg_index = torch.arange(hidden_states.shape[1], device=hidden_states.device).unsqueeze(0)
mask_psg_index_start = psg_index >= psg_start_length[:, None]
mask_psg_index_end = psg_index < psg_end_length[:, None]
mask_psg_index = mask_psg_index_start & mask_psg_index_end
hidden_states = hidden_states * mask_psg_index.unsqueeze(-1)
passage_hidden_states = torch.zeros((hidden_states.shape[0],
(max_passage_length + compress_ratio - 1) // compress_ratio * compress_ratio,
hidden_states.shape[-1]), dtype=hidden_states.dtype).to(hidden_states.device)
passage_end_length = passage_lengths
passage_index = torch.arange(passage_hidden_states.shape[1], device=hidden_states.device).unsqueeze(0) # maybe exceed the max passage length
mask_passage_index = passage_index < passage_end_length[:, None]
raw_passage_end_length = query_lengths + passage_lengths
raw_passage_start_length = query_lengths
raw_passage_index = torch.arange(hidden_states.shape[1], device=hidden_states.device).unsqueeze(0)
raw_mask_passage_index_start = raw_passage_index >= raw_passage_start_length[:, None]
raw_mask_passage_index_end = raw_passage_index < raw_passage_end_length[:, None]
raw_mask_passage_index = raw_mask_passage_index_start & raw_mask_passage_index_end
passage_hidden_states[mask_passage_index] = hidden_states[raw_mask_passage_index]
passage_weights = torch.zeros((weights.shape[0],
(max_passage_length + compress_ratio - 1) // compress_ratio * compress_ratio)
, dtype=weights.dtype).to(hidden_states.device)
weights = torch.sum(weights, dim=1)
passage_weights[mask_passage_index] = weights[raw_mask_passage_index]
passage_weights = passage_weights.view(passage_weights.shape[0], -1, compress_ratio)
passage_weights = passage_weights / torch.sum(passage_weights, dim=-1
).view(passage_weights.shape[0], -1, 1)
passage_weights = passage_weights.view(passage_weights.shape[0], -1)
# passage_weights = torch.where(passage_weights == torch.nan, 0, passage_weights)
passage_hidden_states = passage_hidden_states * passage_weights.unsqueeze(-1)
passage_hidden_states = passage_hidden_states.view(passage_hidden_states.shape[0], -1, compress_ratio,
passage_hidden_states.shape[-1])
passage_hidden_states = torch.sum(passage_hidden_states, dim=2)
passage_end_length = retain_passage_lengths
passage_index = torch.arange(passage_hidden_states.shape[1], device=hidden_states.device).unsqueeze(0)
mask_passage_index = passage_index < passage_end_length[:, None]
new_hidden_states[new_mask_passage_index] = passage_hidden_states[mask_passage_index]
return new_hidden_states, new_attention_mask
@add_start_docstrings(
"The bare Mistral Model outputting raw hidden-states without any specific head on top.",
MISTRAL_START_DOCSTRING,
)
class CostWiseMistralModel(MistralPreTrainedModel):
"""
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MistralDecoderLayer`]
Args:
config: MistralConfig
"""
def __init__(self, config: CostWiseMistralConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList(
[MistralDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
self._attn_implementation = config._attn_implementation
self.norm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
@add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
compress_layer: Optional[int] = None,
compress_ratio: Optional[int] = None,
cutoff_layers: Optional[List[int]] = None,
query_lengths: Optional[int] = None,
prompt_lengths: Optional[int] = None,
) -> Union[Tuple, CostWiseModelOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
compress_ratio = None if compress_ratio == 1 else compress_ratio
if compress_layer is not None and compress_ratio is not None:
output_attentions = True
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
if self.config.layer_wise:
output_hidden_states = True
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
elif input_ids is not None:
batch_size, seq_length = input_ids.shape
elif inputs_embeds is not None:
batch_size, seq_length, _ = inputs_embeds.shape
else:
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
if compress_layer is not None and compress_ratio is not None:
logger.warning_once(
"`use_cache=True` is incompatible with reranker. Setting `use_cache=False`."
)
use_cache = False
past_key_values_length = 0
if use_cache:
use_legacy_cache = not isinstance(past_key_values, Cache)
if use_legacy_cache:
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
past_key_values_length = past_key_values.get_usable_length(seq_length)
if position_ids is None:
device = input_ids.device if input_ids is not None else inputs_embeds.device
position_ids = torch.arange(
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
)
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
else:
position_ids = position_ids.view(-1, seq_length).long()
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if attention_mask is not None and self._attn_implementation == "flash_attention_2" and use_cache:
is_padding_right = attention_mask[:, -1].sum().item() != batch_size
if is_padding_right:
raise ValueError(
"You are attempting to perform batched generation with padding_side='right'"
" this may lead to unexpected behaviour for Flash Attention version of Mistral. Make sure to "
" call `tokenizer.padding_side = 'left'` before tokenizing the input. "
)
if self._attn_implementation == "flash_attention_2":
# 2d mask is passed through the layers
input_attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
elif self._attn_implementation == "sdpa" and not output_attentions:
# output_attentions=True can not be supported when using SDPA, and we fall back on
# the manual implementation that requires a 4D causal mask in all cases.
input_attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
attention_mask,
(batch_size, seq_length),
inputs_embeds,
past_key_values_length,
sliding_window=self.config.sliding_window,
)
else:
# 4d mask is passed through the layers
input_attention_mask = _prepare_4d_causal_attention_mask(
attention_mask,
(batch_size, seq_length),
inputs_embeds,
past_key_values_length,
sliding_window=self.config.sliding_window,
)
hidden_states = inputs_embeds
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_attention_masks = ()
all_self_attns = () if output_attentions else None
next_decoder_cache = None
left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0]) and (
torch.sum(attention_mask) != attention_mask.shape[0] * attention_mask.shape[1])
query_lengths = [0] * hidden_states.shape[0] if query_lengths is None else query_lengths
prompt_lengths = [0] * hidden_states.shape[0] if prompt_lengths is None else prompt_lengths
if not isinstance(query_lengths, torch.Tensor):
query_lengths = torch.tensor(query_lengths, device=hidden_states.device)
if not isinstance(prompt_lengths, torch.Tensor):
prompt_lengths = torch.tensor(prompt_lengths, device=hidden_states.device)
if cutoff_layers is None:
max_layer = self.config.num_hidden_layers
cutoff_layers = [max_layer]
if isinstance(cutoff_layers, int):
max_layer = cutoff_layers
cutoff_layers = [cutoff_layers]
else:
max_layer = max(cutoff_layers)
for idx, decoder_layer in enumerate(self.layers):
if self.config.layer_wise:
if idx in cutoff_layers and output_hidden_states:
all_hidden_states += (self.norm(hidden_states),)
all_attention_masks += (attention_mask,)
if idx == max_layer:
break
elif output_hidden_states:
all_hidden_states += (hidden_states,)
if compress_layer is not None and compress_ratio is not None and idx in compress_layer and idx != 0:
# if all_self_attns is not None:
# # weights = all_self_attns[-1][:, :, -1, :]
# weights = all_self_attns
# else:
# weights = None
if left_padding:
raise ValueError('You must use right padding...')
hidden_states, attention_mask = token_compress(compress_ratio, hidden_states, attention_mask,
query_lengths, prompt_lengths, all_self_attns)
torch.cuda.empty_cache()
device = input_ids.device if input_ids is not None else inputs_embeds.device
seq_length = hidden_states.shape[1]
position_ids = torch.arange(
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
)
position_ids = position_ids.unsqueeze(0)
if self._attn_implementation == "flash_attention_2":
# 2d mask is passed through the layers
input_attention_mask = attention_mask if (
attention_mask is not None and 0 in attention_mask) else None
elif self._attn_implementation == "sdpa" and not output_attentions:
# output_attentions=True can not be supported when using SDPA, and we fall back on
# the manual implementation that requires a 4D causal mask in all cases.
input_attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
attention_mask,
(batch_size, seq_length),
inputs_embeds,
past_key_values_length,
)
else:
# 4d mask is passed through the layers
input_attention_mask = _prepare_4d_causal_attention_mask(
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
input_attention_mask,
position_ids,
past_key_values,
output_attentions,
use_cache,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=input_attention_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
if output_attentions:
# all_self_attns += (layer_outputs[1],)
all_self_attns = layer_outputs[1][:, :, -1, :]
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if not self.config.layer_wise:
if output_hidden_states:
all_hidden_states += (hidden_states,)
all_attention_masks += (attention_mask,)
else:
if output_hidden_states and self.config.num_hidden_layers == max_layer:
all_hidden_states += (hidden_states,)
all_attention_masks += (attention_mask,)
next_cache = None
if use_cache:
next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
torch.cuda.empty_cache()
if not return_dict:
return tuple(
v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_attention_masks] if
v is not None)
return CostWiseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
attention_masks=all_attention_masks
)
class CostWiseHead(nn.Module):
"""Head for sentence-level classification tasks."""
def __init__(self, input_size, output_size):
super().__init__()
self.linear_head = nn.Linear(input_size, output_size, bias=False)
def forward(self, **kwargs):
return self.linear_head(**kwargs)
class CostWiseMistralForCausalLM(MistralPreTrainedModel):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config):
super().__init__(config)
self.model = CostWiseMistralModel(config)
self.vocab_size = config.vocab_size
if not config.layer_wise:
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
else:
self.lm_head = nn.ModuleList(
[CostWiseHead(config.hidden_size, 1) for _ in range(
config.start_layer, config.num_hidden_layers + 1, config.layer_sep
)]
)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
@add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
compress_layer: Optional[int] = None,
compress_ratio: Optional[int] = None,
cutoff_layers: Optional[List[int]] = None,
query_lengths: Optional[int] = None,
prompt_lengths: Optional[int] = None,
) -> Union[Tuple, CostWiseCausalLMOutputWithPast]:
r"""
Args:
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, MistralForCausalLM
>>> model = MistralForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1")
>>> tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1")
>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if compress_ratio is not None and compress_ratio == 1:
compress_ratio = None
if self.config.layer_wise:
if cutoff_layers is None:
cutoff_layers = [self.config.num_hidden_layers]
elif isinstance(cutoff_layers, int):
cutoff_layers = [cutoff_layers]
can_use_layers = list(range(self.config.start_layer, self.config.num_hidden_layers + 1, self.config.layer_sep))
remove_layers = [i for i in cutoff_layers if i not in can_use_layers]
if len(remove_layers) > 0:
logger.warning_once(
f"layers {remove_layers} are incompatible with the setting. They will be removed..."
)
cutoff_layers = [i for i in cutoff_layers if i not in remove_layers]
if len(cutoff_layers) == 0:
raise ValueError(f"Your cutoff layers must in [{self.config.start_layer}, {self.config.num_hidden_layers}]")
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
compress_layer=compress_layer,
compress_ratio=compress_ratio,
query_lengths=query_lengths,
prompt_lengths=prompt_lengths,
cutoff_layers=cutoff_layers
)
if not self.config.layer_wise:
hidden_states = outputs[0]
logits = self.lm_head(hidden_states)
logits = logits.float()
loss = None
if labels is not None:
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
shift_logits = shift_logits.view(-1, self.config.vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
else:
hidden_states = outputs.hidden_states
logits = ()
for i in range(len(hidden_states)):
tmp_logits = self.lm_head[i].linear_head(hidden_states[i])
tmp_logits = tmp_logits.float()
tmp_logits = tmp_logits.reshape(hidden_states[i].shape[0], -1)
logits = logits + (tmp_logits,)
loss = None
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CostWiseCausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
attention_masks=outputs[-1] if self.model.config.layer_wise else outputs[-1][-1]
)
def prepare_inputs_for_generation(
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
):
# Omit tokens covered by past_key_values
if past_key_values is not None:
if isinstance(past_key_values, Cache):
cache_length = past_key_values.get_seq_length()
past_length = past_key_values.seen_tokens
max_cache_length = past_key_values.get_max_length()
else:
cache_length = past_length = past_key_values[0][0].shape[2]
max_cache_length = None
# Keep only the unprocessed tokens:
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
# input)
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
# input_ids based on the past_length.
elif past_length < input_ids.shape[1]:
input_ids = input_ids[:, past_length:]
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
if (
max_cache_length is not None
and attention_mask is not None
and cache_length + input_ids.shape[1] > max_cache_length
):
attention_mask = attention_mask[:, -max_cache_length:]
position_ids = kwargs.get("position_ids", None)
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values:
position_ids = position_ids[:, -input_ids.shape[1] :]
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids}
model_inputs.update(
{
"position_ids": position_ids,
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
"attention_mask": attention_mask,
}
)
return model_inputs
@staticmethod
def _reorder_cache(past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
reordered_past += (
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
)
return reordered_past