Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,150 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# π T5-Based Multilingual Text Translator
|
2 |
+
|
3 |
+
This repository presents a fine-tuned T5-small model for multilingual text translation across English, French, German, Italian, and Portuguese. It includes quantization for efficient inference and speech synthesis support for accessibility.
|
4 |
+
|
5 |
+
---
|
6 |
+
|
7 |
+
## π Problem Statement
|
8 |
+
|
9 |
+
The goal is to translate text between English and multiple European languages using a transformer-based model. Instead of using black-box APIs, this project fine-tunes the T5 model on parallel multilingual corpora, enabling offline translation and potential customization.
|
10 |
+
|
11 |
+
---
|
12 |
+
|
13 |
+
## π Dataset
|
14 |
+
|
15 |
+
- **Source:** Custom parallel corpus (`.txt` files) with one-to-one sentence alignments.
|
16 |
+
- **Languages Supported:**
|
17 |
+
- English
|
18 |
+
- French
|
19 |
+
- German
|
20 |
+
- Italian
|
21 |
+
- Portuguese
|
22 |
+
|
23 |
+
- **Structure:**
|
24 |
+
- Each language has a corresponding `.txt` file.
|
25 |
+
- Lines are aligned by index to form translation pairs.
|
26 |
+
|
27 |
+
- **Example Input Format:**
|
28 |
+
```
|
29 |
+
Source: translate English to French: I am a student.
|
30 |
+
Target: Je suis un Γ©tudiant.
|
31 |
+
```
|
32 |
+
|
33 |
+
---
|
34 |
+
|
35 |
+
## π§ Model Details
|
36 |
+
|
37 |
+
- **Architecture:** T5-small
|
38 |
+
- **Tokenizer:** `T5Tokenizer`
|
39 |
+
- **Model:** `T5ForConditionalGeneration`
|
40 |
+
- **Task Type:** Sequence-to-Sequence Translation (Supervised Fine-tuning)
|
41 |
+
|
42 |
+
---
|
43 |
+
|
44 |
+
## π§ Installation
|
45 |
+
|
46 |
+
```bash
|
47 |
+
pip install transformers datasets torch gtts
|
48 |
+
```
|
49 |
+
|
50 |
+
---
|
51 |
+
|
52 |
+
## π Loading the Model
|
53 |
+
|
54 |
+
```python
|
55 |
+
from transformers import T5ForConditionalGeneration, T5Tokenizer
|
56 |
+
import torch
|
57 |
+
|
58 |
+
# Load quantized model (float16)
|
59 |
+
model = T5ForConditionalGeneration.from_pretrained("quantized_model", torch_dtype=torch.float16)
|
60 |
+
tokenizer = T5Tokenizer.from_pretrained("quantized_model")
|
61 |
+
|
62 |
+
# Translation example
|
63 |
+
source = "translate English to German: How are you?"
|
64 |
+
inputs = tokenizer(source, return_tensors="pt", padding=True, truncation=True)
|
65 |
+
|
66 |
+
with torch.no_grad():
|
67 |
+
outputs = model.generate(**inputs)
|
68 |
+
|
69 |
+
print("Translated:", tokenizer.decode(outputs[0], skip_special_tokens=True))
|
70 |
+
```
|
71 |
+
|
72 |
+
---
|
73 |
+
|
74 |
+
## π Performance Metrics
|
75 |
+
|
76 |
+
As this project is based on a single-epoch fine-tuning, performance metrics are not explicitly computed. For a production-level system, BLEU or ROUGE scores should be evaluated.
|
77 |
+
|
78 |
+
---
|
79 |
+
|
80 |
+
## ποΈ Fine-Tuning Details
|
81 |
+
|
82 |
+
### π Dataset Preparation
|
83 |
+
|
84 |
+
- A total of 5 text files (`english.txt`, `french.txt`, etc.)
|
85 |
+
- Each sentence aligned by index for parallel translation.
|
86 |
+
|
87 |
+
### π§ Training Configuration
|
88 |
+
|
89 |
+
- **Epochs:** 1
|
90 |
+
- **Batch size:** 4
|
91 |
+
- **Max sequence length:** 128
|
92 |
+
- **Model base:** `t5-small`
|
93 |
+
- **Framework:** Hugging Face Transformers + PyTorch
|
94 |
+
- **Evaluation strategy:** 10% test split
|
95 |
+
|
96 |
+
---
|
97 |
+
|
98 |
+
## π Quantization
|
99 |
+
|
100 |
+
Post-training quantization was performed using `.half()` precision (FP16) to reduce model size and improve inference speed.
|
101 |
+
|
102 |
+
```python
|
103 |
+
# Load full-precision model
|
104 |
+
model_fp32 = T5ForConditionalGeneration.from_pretrained("model")
|
105 |
+
|
106 |
+
# Convert to half precision
|
107 |
+
model_fp16 = model_fp32.half()
|
108 |
+
model_fp16.save_pretrained("quantized_model")
|
109 |
+
```
|
110 |
+
|
111 |
+
**Model Size Comparison:**
|
112 |
+
|
113 |
+
| Type | Size (KB) |
|
114 |
+
|------------------|-----------|
|
115 |
+
| FP32 (Original) | ~6,904 KB |
|
116 |
+
| FP16 (Quantized) | ~3,452 KB |
|
117 |
+
|
118 |
+
---
|
119 |
+
|
120 |
+
## π Repository Structure
|
121 |
+
|
122 |
+
```
|
123 |
+
.
|
124 |
+
βββ model/ # Contains FP32 model files
|
125 |
+
β βββ config.json
|
126 |
+
β βββ model.safetensors
|
127 |
+
β βββ tokenizer_config.json
|
128 |
+
β βββ ...
|
129 |
+
βββ quantized_model/ # Contains FP16 quantized model files
|
130 |
+
β βββ config.json
|
131 |
+
β βββ model.safetensors
|
132 |
+
β βββ tokenizer_config.json
|
133 |
+
β βββ ...
|
134 |
+
βββ README.md # Documentation
|
135 |
+
βββ multilingual_translator.py # Training and inference script
|
136 |
+
```
|
137 |
+
|
138 |
+
---
|
139 |
+
|
140 |
+
## β οΈ Limitations
|
141 |
+
|
142 |
+
- Trained on a small dataset with only one epoch β may not generalize well to all phrases or complex sentences.
|
143 |
+
- Language coverage is limited to 5 predefined languages.
|
144 |
+
- gTTS is dependent on Google API and requires internet access.
|
145 |
+
|
146 |
+
---
|
147 |
+
|
148 |
+
## π€ Contributing
|
149 |
+
|
150 |
+
Feel free to submit issues or PRs to add more language pairs, extend training, or integrate UI for real-time use.
|