--- library_name: peft base_model: microsoft/codebert-base tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: codebert-emotion-model results: [] --- # codebert-emotion-model This model is a fine-tuned version of [microsoft/codebert-base](https://huggingface.co/microsoft/codebert-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.5182 - Accuracy: 0.415 - F1: 0.2434 - Precision: 0.1722 - Recall: 0.415 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 1.727 | 1.0 | 63 | 1.5182 | 0.415 | 0.2434 | 0.1722 | 0.415 | | 1.5964 | 2.0 | 126 | 1.4962 | 0.415 | 0.2434 | 0.1722 | 0.415 | | 1.6195 | 2.96 | 186 | 1.4945 | 0.415 | 0.2434 | 0.1722 | 0.415 | ### Framework versions - PEFT 0.15.2 - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.21.1