Any-to-Any
t5-vit-14-v1 / pipeline.py
AbstractPhil's picture
Create pipeline.py
99cb0de verified
import safetensors.torch as st
import torch
from diffusers import StableDiffusionXLPipeline
from transformers import T5TokenizerFast, T5EncoderModel
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
from tqdm.auto import tqdm
# ─────────────────────────────────────────────────────────────
# β–‘ Two-Stream Shunt Adapter
# ─────────────────────────────────────────────────────────────
class TwoStreamShuntAdapter(nn.Module):
"""
Cross-attentive adapter that aligns T5 and CLIP token streams.
Returns:
anchor : (B, Lc, clip_dim)
delta : (B, Lc, clip_dim)
log_sigma : (B, Lc, clip_dim) – log Οƒ, always finite
attn_t2c : (B, heads, Lt, Lc)
attn_c2t : (B, heads, Lc, Lt)
tau : (heads, 1, 1) – per-head threshold param
g_pred : (B, 1) – guidance-scale prediction
gate : (B, Lc, 1) – per-token gate ∈ (0,1)
"""
def __init__(
self,
t5_dim: int = 512,
clip_dim: int = 768,
bottleneck: int = 256,
heads: int = 8,
tau_init: float = 0.1,
max_guidance: float = 10.0,
):
super().__init__()
print("TwoStreamShuntAdapter init")
self.heads = heads
self.bneck = bottleneck
self.max_guidance = max_guidance
# projections
self.proj_t5 = nn.Linear(t5_dim, bottleneck)
self.proj_clip = nn.Linear(clip_dim, bottleneck)
# cross-attention
self.cross_t2c = nn.MultiheadAttention(
bottleneck, heads, batch_first=True, dropout=0.1
)
self.cross_c2t = nn.MultiheadAttention(
bottleneck, heads, batch_first=True, dropout=0.1
)
# head-wise Ο„
self.tau = nn.Parameter(torch.full((heads, 1, 1), tau_init))
# convolutional pocket residual (depth-wise)
self.res1 = nn.Conv1d(
bottleneck, bottleneck, 3, padding=1, groups=bottleneck
)
self.res2 = nn.Conv1d(
bottleneck, bottleneck, 3, padding=1, groups=bottleneck
)
self.norm_res = nn.LayerNorm(bottleneck)
# fusion + projections
self.fuse = nn.Linear(2 * bottleneck, bottleneck)
self.anchor_proj = nn.Sequential(
nn.Linear(bottleneck, bottleneck), nn.GELU(),
nn.Linear(bottleneck, clip_dim)
)
self.delta_proj = nn.Sequential(
nn.Linear(bottleneck, bottleneck), nn.GELU(),
nn.Linear(bottleneck, clip_dim)
)
self.logsig_proj = nn.Sequential(
nn.Linear(bottleneck, bottleneck), nn.GELU(),
nn.Linear(bottleneck, clip_dim)
)
self.gate_proj = nn.Sequential(
nn.Linear(bottleneck, bottleneck), nn.GELU(),
nn.Linear(bottleneck, 1), nn.Sigmoid()
)
self.guidance_proj = nn.Sequential(
nn.LayerNorm(bottleneck), nn.Linear(bottleneck, 1), nn.Sigmoid()
)
def load_state_dict(self, args, **kwargs):
# remove _orig_mod from state dict before applying.
state_dict = {k.replace("_orig_mod.", ""): v for k, v in args.items()}
super().load_state_dict(state_dict, **kwargs)
def forward(self, t5_seq: torch.Tensor, clip_seq: torch.Tensor):
print("πŸ“£ SHUNT FORWARD CALLED")
B, Lt, _ = t5_seq.size()
_, Lc, _ = clip_seq.size()
# 1) project into bottleneck
t5_b = self.proj_t5(t5_seq) # (B, Lt, b)
clip_b = self.proj_clip(clip_seq) # (B, Lc, b)
# 2) cross-attention
t2c, attn_t2c = self.cross_t2c(
t5_b, clip_b, clip_b, need_weights=True, average_attn_weights=False
)
c2t, attn_c2t = self.cross_c2t(
clip_b, t5_b, t5_b, need_weights=True, average_attn_weights=False
)
# 3) convolutional pocket on T5β†’CLIP
x = t2c.transpose(1, 2) # (B, b, Lt)
x = F.gelu(self.res1(x))
x = F.gelu(self.res2(x)).transpose(1, 2) # (B, Lt, b)
pocket = self.norm_res(t2c + x) # (B, Lt, b)
# 4) fuse pocket avg with C2T
pocket_mean = pocket.mean(1, keepdim=True).expand(-1, Lc, -1)
h = F.gelu(self.fuse(torch.cat([pocket_mean, c2t], -1))) # (B, Lc, b)
# 5) outputs
anchor = self.anchor_proj(h) # (B,Lc,768)
delta_mean = self.delta_proj(h) # (B,Lc,768)
log_sigma = self.logsig_proj(h) # (B,Lc,768)
gate = self.gate_proj(h) # (B,Lc,1)
delta = delta_mean * gate # (B,Lc,768)
g_tok = self.guidance_proj(h).squeeze(-1) # (B,Lc)
g_pred = g_tok.mean(1, keepdim=True) * self.max_guidance
#print(anchor, delta, log_sigma, attn_t2c, attn_c2t, self.tau, g_pred, gate)
return anchor, delta, log_sigma, attn_t2c, attn_c2t, self.tau, g_pred, gate
# --- 1. load pipeline -------------------------------------------------
pipe = StableDiffusionXLPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
torch_dtype=torch.float16).to("cuda")
# --- 2. load tiny-T5 & shunt (fp32) -----------------------------------
t5_tok = T5TokenizerFast.from_pretrained("t5-small")
t5_mod = T5EncoderModel.from_pretrained("t5-small").eval().to("cuda")
shunt = TwoStreamShuntAdapter().float().eval().to("cuda")
shunt.load_state_dict( st.load_file("/content/drive/MyDrive/t5-clip-l-shunts/vitl14_t5small_shunt_vanilla_final.safetensors") )
# --- 3. wrap encode_prompt once ---------------------------------------
orig_encode = pipe.encode_prompt
config = {
"strength": 1.0,
"gate_gamma": 1.0,
"tau_scale": 1.0,
"guidance_gain": 1.0,
"guidance_bias": 0.0
}
gen = torch.Generator(device="cuda").manual_seed(420)
strength = 0
# the working version that can't be omitted,
def stable_encode_prompt_shunted(self, *args, **kw):
pe, ne, pool, npool = orig_encode(*args, **kw) # regular call
# πŸ‘‰ split: first 768 dims are CLIP-L, rest 1280 are CLIP-G
clipL, clipG = pe[..., :768], pe[..., 768:]
# build T5 batch (handles CFG dup automatically because
# encode_prompt already concatenated negative & positive if needed)
bsz = clipL.shape[0]
texts = ["tmp"] * bsz # dummy, we only care about hidden states
t5_ids = t5_tok(texts, return_tensors="pt").input_ids.to("cuda")
t5_seq = t5_mod(t5_ids).last_hidden_state # (B,L,512)
# run adapter in fp32
delta = shunt(t5_seq.float(), clipL.float())[1] # second output is Ξ”
delta = delta * strength # << your strength knob
clipL_shift = (clipL.float() + delta).to(clipL.dtype)
pe_shifted = torch.cat([clipL_shift, clipG], dim=-1)
return pe_shifted, ne, pool, npool
#-----------------------------------------------------------------------------------------
def encode_prompt_shunted(self, *a, **k):
# 1) run the normal encoder with β€œstyle” & β€œcontext” already split
pe, ne, pool, npool = orig_encode(*a, **k) # (B,77,2048)
# 2) split CLIP-L / CLIP-G
clipL, clipG = pe[..., :768], pe[..., 768:]
# 3) build T5 on the *context* text (it’s in k['prompt_2'])
t5_ids = t5_tok([k.get("prompt_2")], return_tensors="pt").input_ids.to(pe.device)
t5_seq = t5_mod(t5_ids).last_hidden_state.float()
# 4) shunt β†’ Ξ” (FP32 β†’ back-cast)
Ξ” = shunt(t5_seq, clipL.float())[1].to(clipL.dtype)
clipL_shift = clipL + Ξ” * strength
# 5) concatenate back
pe_shift = torch.cat([clipL_shift, clipG], dim=-1)
return pe_shift, ne, pool, npool
pipe.encode_prompt = encode_prompt_shunted.__get__(pipe, type(pipe))
PROMPT = "a naturally lit and beautiful room with a photorealistic depiction of a woman"
PROMPT_2 = "a realistic depiction of a woman sitting on a chair at a coffee shop sipping coffee, the environment is beautiful"
NEG = "blurry, distorted, monochrome, greyscale, watermark"
STEPS = 50
base_strength = 0.5
base_cfg = 7.5
for i in range(0, 4):
strength = base_strength + (i * 0.25)
cfg = base_cfg - (i * 0.25)
img = pipe(
PROMPT,
prompt_2=PROMPT_2,
negative_prompt=NEG,
num_inference_steps=STEPS,
cfg_scale=cfg,
generator=torch.Generator(device="cuda").manual_seed(420)
).images[0]
img.save(f"woman_cfg_{int(cfg*100)}_{int(strength*100)}.png")
# --- 4. generate -------------------------------------------------------
#img = pipe(
# PROMPT,
# negative_prompt=NEG,
# num_inference_steps=STEPS,
# generator=torch.Generator(device="cuda").manual_seed(420)
# ).images[0]
#img.save("majestic_baseline.png")#
#
#strength = 0.25
## --- 4. generate -------------------------------------------------------
#img = pipe(
# PROMPT,
# negative_prompt=NEG,
# num_inference_steps=STEPS,
# generator=torch.Generator(device="cuda").manual_seed(420)
# ).images[0]
#img.save("majestic_02.png")#
#strength = 0.5
## --- 4. generate -------------------------------------------------------
#img = pipe(
# PROMPT,
# negative_prompt=NEG,
# num_inference_steps=STEPS,
# generator=torch.Generator(device="cuda").manual_seed(420)
# ).images[0]
#img.save("majestic_05.png")#
#strength = 0.75
## --- 4. generate -------------------------------------------------------
#img = pipe(
# PROMPT,
# negative_prompt=NEG,
# num_inference_steps=STEPS,
# generator=torch.Generator(device="cuda").manual_seed(420)
# ).images[0]
#img.save("majestic_075.png")