File size: 5,606 Bytes
a4ecb4f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
ADAPTER_CONFIG = {
"adapter_id": "003",
"name": "DualShuntAdapter-G",
"t5": {
"model": "google/flan-t5-base",
"hidden_size": 768,
},
"clip": {
"model": "laion/CLIP-ViT-bigG-14-laion2B-39B-b160k",
"hidden_size": 1280,
},
"bottleneck": 640,
"heads": 20,
"tau_init": 0.1,
"max_guidance": 10.0,
"proj_layers": 2,
"layer_norm": True,
"dropout": 0.1,
"use_dropout": True,
"use_proj_stack": True,
"assert_input_dims": True,
"routing": {
"type": "cross_attention",
"enable_causal_mask": False,
"bidirectional": True
},
"version": "v0.3.2",
"description": "Final Dual Shunt Adapter with projection stack, dropout, and stacked residual refinement pocket."
}
import torch
import torch.nn as nn
import torch.nn.functional as F
# βββ Residual Pocket Block βββββββββββββββββββββββββββββββββββ
class BottleneckResBlock(nn.Module):
def __init__(self, dim, kernel=3, dropout=0.1):
super().__init__()
self.norm = nn.LayerNorm(dim)
self.conv = nn.Conv1d(dim, dim, kernel_size=kernel, padding=kernel // 2, groups=1)
self.proj = nn.Sequential(
nn.Linear(dim, dim * 2),
nn.GELU(),
nn.Linear(dim * 2, dim),
nn.Dropout(dropout)
)
def forward(self, x):
residual = x
x = self.norm(x)
x = x.transpose(1, 2)
x = self.conv(x).transpose(1, 2)
return residual + self.proj(x)
# βββ Two Stream Shunt Adapter ββββββββββββββββββββββββββββββββββββββ
class TwoStreamShuntAdapter(nn.Module):
def __init__(self, config: dict):
super().__init__()
self.config = config
self.t5_dim = config["t5"]["hidden_size"]
self.clip_dim = config["clip"]["hidden_size"]
self.bneck = config["bottleneck"]
self.heads = config["heads"]
self.tau_init = config["tau_init"]
self.max_guidance = config["max_guidance"]
use_norm = config.get("layer_norm", True)
use_do = config.get("use_dropout", True)
do_p = config.get("dropout", 0.1)
proj_depth = config.get("proj_layers", 2)
def build_projection(input_dim, output_dim):
layers = []
last_dim = input_dim
if use_norm:
layers.append(nn.LayerNorm(last_dim))
for i in range(proj_depth):
next_dim = self.bneck * (2 if i == 0 and proj_depth > 1 else 1)
layers.append(nn.Linear(last_dim, next_dim))
layers.append(nn.GELU())
if use_do:
layers.append(nn.Dropout(do_p))
last_dim = next_dim
layers.append(nn.Linear(last_dim, output_dim))
return nn.Sequential(*layers)
# Projections
self.proj_t5 = build_projection(self.t5_dim, self.bneck)
self.proj_clip = build_projection(self.clip_dim, self.bneck)
# Attention
self.cross_t2c = nn.MultiheadAttention(self.bneck, self.heads, batch_first=True, dropout=do_p)
self.cross_c2t = nn.MultiheadAttention(self.bneck, self.heads, batch_first=True, dropout=do_p)
self.tau = nn.Parameter(torch.full((self.heads, 1, 1), self.tau_init))
# Residual Pocket
self.pocket_blocks = nn.Sequential(
BottleneckResBlock(self.bneck, dropout=do_p),
BottleneckResBlock(self.bneck, dropout=do_p)
)
# Fuse
self.fuse = nn.Sequential(
nn.LayerNorm(2 * self.bneck),
nn.Linear(2 * self.bneck, self.bneck * 2),
nn.GELU(),
nn.Linear(self.bneck * 2, self.bneck)
)
# Output Projections
self.anchor_proj = build_projection(self.bneck, self.clip_dim)
self.delta_proj = build_projection(self.bneck, self.clip_dim)
self.logsig_proj = build_projection(self.bneck, self.clip_dim)
self.gate_proj = nn.Sequential(
nn.LayerNorm(self.bneck),
nn.Linear(self.bneck, self.bneck),
nn.GELU(),
nn.Linear(self.bneck, 1),
nn.Tanh(),
nn.Sigmoid()
)
self.guidance_proj = nn.Sequential(
nn.LayerNorm(self.bneck),
nn.Linear(self.bneck, 1),
nn.Sigmoid()
)
def forward(self, t5_seq: torch.Tensor, clip_seq: torch.Tensor):
if self.config.get("assert_input_dims", True):
assert t5_seq.size(-1) == self.t5_dim
assert clip_seq.size(-1) == self.clip_dim
t5_b = self.proj_t5(t5_seq)
clip_b = self.proj_clip(clip_seq)
t2c, attn_t2c = self.cross_t2c(t5_b, clip_b, clip_b, need_weights=True, average_attn_weights=False)
c2t, attn_c2t = self.cross_c2t(clip_b, t5_b, t5_b, need_weights=True, average_attn_weights=False)
pocket = self.pocket_blocks(t2c)
pocket_mean = pocket.mean(1, keepdim=True).expand(-1, clip_b.size(1), -1)
h = self.fuse(torch.cat([pocket_mean, c2t], dim=-1))
anchor = self.anchor_proj(h)
delta = self.delta_proj(h) * self.gate_proj(h)
log_sigma = self.logsig_proj(h)
g_tok = self.guidance_proj(h).squeeze(-1)
g_pred = g_tok.mean(1, keepdim=True) * self.max_guidance
return anchor, delta, log_sigma, attn_t2c, attn_c2t, self.tau, g_pred, self.gate_proj(h)
|