--- library_name: transformers tags: [] --- ## Model Description This Llama3-based model is fine-tuned using the "Representation Bending" (REPBEND) approach described in [Representation Bending for Large Language Model Safety](https://arxiv.org/abs/2504.01550). REPBEND modifies the model’s internal representations to reduce harmful or unsafe responses while preserving overall capabilities. The result is a model that is robust to various forms of adversarial jailbreak attacks, out-of-distribution harmful prompts, and fine-tuning exploits, all while maintaining useful and informative responses to benign requests. ## Uses ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM from peft import PeftModel model_id = "meta-llama/Meta-Llama-3-8B-Instruct" adapter_id = "thkim0305/RepBend_Llama3_8B_LoRA" tokenizer = AutoTokenizer.from_pretrained(adapter_id, use_fast=False) model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.bfloat16, device_map="auto", ) model = PeftModel.from_pretrained(model, adapter_id, adapter_name="default") input_text = "Who are you?" template = "<|start_header_id|>user<|end_header_id|>\n\n{instruction}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n" prompt = template.format(instruction=input_text) input_ids = tokenizer.encode(prompt, return_tensors="pt").to(model.device) outputs = model.generate(input_ids, max_new_tokens=256) generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) print(generated_text) ``` ## Code Please refers to [this github page](https://github.com/AIM-Intelligence/RepBend/tree/main?tab=readme-ov-file) ## Citation ``` @article{repbend, title={Representation Bending for Large Language Model Safety}, author={Yousefpour, Ashkan and Kim, Taeheon and Kwon, Ryan S and Lee, Seungbeen and Jeung, Wonje and Han, Seungju and Wan, Alvin and Ngan, Harrison and Yu, Youngjae and Choi, Jonghyun}, journal={arXiv preprint arXiv:2504.01550}, year={2025} } ```