Add model card
Browse files
README.md
CHANGED
@@ -1,3 +1,51 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
library_name: transformers
|
4 |
+
tags: []
|
5 |
+
---
|
6 |
+
|
7 |
+
|
8 |
+
## Model Description
|
9 |
+
This Llama3-based model is fine-tuned using the "Representation Bending" (REPBEND) approach described in [Representation Bending for Large Language Model Safety](https://arxiv.org/abs/2504.01550). REPBEND modifies the model’s internal representations to reduce harmful or unsafe responses while preserving overall capabilities. The result is a model that is robust to various forms of adversarial jailbreak attacks, out-of-distribution harmful prompts, and fine-tuning exploits, all while maintaining useful and informative responses to benign requests.
|
10 |
+
|
11 |
+
## Uses
|
12 |
+
```python
|
13 |
+
import torch
|
14 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
15 |
+
from peft import PeftModel
|
16 |
+
|
17 |
+
model_id = "meta-llama/Meta-Llama-3-8B-Instruct"
|
18 |
+
adapter_id = "AIM-Intelligence/RepBend_Llama3_8B_LoRA"
|
19 |
+
tokenizer = AutoTokenizer.from_pretrained(adapter_id, use_fast=False)
|
20 |
+
model = AutoModelForCausalLM.from_pretrained(
|
21 |
+
model_id,
|
22 |
+
torch_dtype=torch.bfloat16,
|
23 |
+
device_map="auto",
|
24 |
+
)
|
25 |
+
model = PeftModel.from_pretrained(model, adapter_id, adapter_name="default")
|
26 |
+
|
27 |
+
input_text = "Who are you?"
|
28 |
+
template = "<|start_header_id|>user<|end_header_id|>\n\n{instruction}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"
|
29 |
+
|
30 |
+
prompt = template.format(instruction=input_text)
|
31 |
+
|
32 |
+
input_ids = tokenizer.encode(prompt, return_tensors="pt").to(model.device)
|
33 |
+
outputs = model.generate(input_ids, max_new_tokens=256)
|
34 |
+
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
35 |
+
|
36 |
+
print(generated_text)
|
37 |
+
```
|
38 |
+
|
39 |
+
## Code
|
40 |
+
|
41 |
+
Please refers to [this github page](https://github.com/AIM-Intelligence/RepBend/tree/main?tab=readme-ov-file)
|
42 |
+
|
43 |
+
## Citation
|
44 |
+
```
|
45 |
+
@article{repbend,
|
46 |
+
title={Representation Bending for Large Language Model Safety},
|
47 |
+
author={Yousefpour, Ashkan and Kim, Taeheon and Kwon, Ryan S and Lee, Seungbeen and Jeung, Wonje and Han, Seungju and Wan, Alvin and Ngan, Harrison and Yu, Youngjae and Choi, Jonghyun},
|
48 |
+
journal={arXiv preprint arXiv:2504.01550},
|
49 |
+
year={2025}
|
50 |
+
}
|
51 |
+
```
|